
Communication-Loss Trade-Off in Federated
Learning: A Distributed Client Selection Algorithm

Minoo Hosseinzadeh1, Nathaniel Hudson1, Sam Heshmati2, and Hana Khamfroush1

1Department of Computer Science, University of Kentucky
2Department of Marketing & Supply Chain, University of Kentucky

Abstract—Mass data generation occurring in the Internet-
of-Things (IoT) requires processing to extract meaningful in-
formation. Deep learning is commonly used to perform such
processing. However, due to the sensitive nature of these data,
it is important to consider data privacy. As such, federated
learning (FL) has been proposed to address this issue. FL pushes
training to the client devices and tasks a central server with
aggregating collected model weights to update a global model.
However, the transmission of these model weights can be costly,
gradually. The trade-off between communicating model weights
for aggregation and the loss provided by the global model remains
an open problem. In this work, we cast this trade-off problem
of client selection in FL as an optimization problem. We then
design a Distributed Client Selection (DCS) algorithm that allows
client devices to decide to participate in aggregation in hopes
of minimizing overall communication cost — while maintaining
low loss. We evaluate the performance of our proposed client
selection algorithm against standard FL and a state-of-the-art
client selection algorithm, called Power-of-Choice (PoC), using
CIFAR-10, FMNIST, and MNIST datasets. Our experimental
results confirm that our DCS algorithm is able to closely match
the loss provided by the standard FL and PoC, while on average
reducing the overall communication cost by nearly 32.67% and
44.71% in comparison to standard FL and PoC, respectively.

Index Terms—Internet-of-Things, Federated Learning, Client
Selection, Distributed Learning, Machine Learning

I. INTRODUCTION

The Internet-of-Things (IoT) includes a vast number of
connected devices that produce a huge amount of data that
need to be processed. Deep Learning (DL) [1] has been shown
as a viable tool to process and analyze IoT-generated data. For
performing DL across IoT devices, the most straight-forward
approach is to rely on a central server to collect raw data from
the IoT devices to then perform model training on the central
server. However, this approach causes privacy issues regarding
IoT devices’ data as the raw data of users are shared with a
central entity. Further, there is expensive communication cost
due to the large distance between the IoT devices and a remote
central server — also the sheer size of IoT-generated data. The
recent advent of Edge Computing [2] can provide improved
privacy, reduced overall latency, and other advantages due to
physical proximity to the IoT devices. While, the volume
of produced data is large enough to elicit smart decisions
regarding how resources are spent [3]–[6].

A recently proposed solution for these challenges is the
framework of federated learning (FL) [7]–[9]. Under the
framework of FL, we consider a central server and K client

devices each with their own data. The central server initializes
a global DL model (e.g., some deep neural network for image
classification) with parameters set w and shares it with K ·C
clients where C ∈ [0, 1]; so that they each host a local copy
of the global model. Then, each client device performs local
training using its own dataset for the now locally-hosted DL
model. Now, clients just send their locally-updated models to
the server to update the global model rather than submitting the
raw data. Then, in the federated aggregation phase, the central
server computes weighted average of the received parameters
to update the global model for redistribution in the next round.
This process occurs over a number of rounds until the global
model’s loss converges. Since no raw data produced by the
clients are transmitted, there is an immediate layer of privacy
provided under the framework of FL [7]–[9]. In this paper, we
refer to the FL presented in [9] as Standard FL.

Although FL provides privacy and reduces the total com-
munication cost of the clients by not communicating their
raw data [2], clients still have to consume energy and spend
communication capacity to upload their locally-updated mod-
els. Additionally, the initially-proposed FL [7]–[9] considers
random client selection. However, recent papers have shown
that biased client selection (i.e. client selection considering
different criteria such as clients’ data) can accelerate the
error convergence [10]–[13]. Although several papers con-
sidered the communication cost associated with uploading
the locally-trained models by proposing smart client selection
algorithms [14], there is still a gap in fully understanding the
trade-off between communication cost and the final loss value
of global model in FL for IoT environments. In this paper, we
solve the client selection problem while focusing on making
a trade-off between the total communication cost of sending
the locally-updated parameters from clients to the server and
the final test loss of the global model. To the best of our
knowledge, this is the first work which considers the trade-off
between the overall communication cost and loss of the global
model in the federated learning environment. We highlight the
main contributions of the paper as following:

• We cast the trade-off between communication cost and
model loss in the FL environment as an optimization
problem where communication between the clients and
the server might be costly due to limited capacities of
the client devices.



• We propose a Distributed Client Selection (DCS) algo-
rithm to solve the proposed optimization problem where
the clients independently decide whether to send their
locally-updated models to the server.

• We show that our algorithm outperforms standard FL
and another client selection baseline presented in [12]
(namely, PoC explained in §V), in terms of the provided
communication-loss trade-off over 3 datasets.

II. RELATED WORK

Initially proposed by Konečnỳ et al. in [7], federated
learning (FL) performs distributed learning across devices
with their own unique datasets while providing an immediate
layer of privacy. The FedAvg aggregation algorithm proposed
by McMahan et al. in [9] demonstrates promising training
loss/accuracy under the FL framework even in the face of
Non-IID data distributions across client devices. One of main
challenges in the FL environments is Client Selection which
has been addressed in two different phases: (i) the training
phase where a set of clients are selected to perform local
training, and (ii) the aggregation phase where a set of clients’
locally-updated models are selected to contribute to federated
aggregation. In [9], the former phase is done randomly, and all
selected clients from the first phase participate in aggregation
phase. In the following, we briefly describe some of recent
works in this area of client selection for FL.

Client Selection for Training Phase. Several papers ad-
dress the client selection problem for training phase to reduce
the overall communication cost [14]–[19]. Papers focused on
either wireless channel properties while minimizing the model
loss [15], or maximizing the number of clients in each round
to minimize the total number of communication rounds [17],
or minimizing the convergence time [14], [16], [18], [19] to
reduce the communication cost. Our work departs from these
works by focusing on client selection to reduce the overall
communication cost for aggregation phase to not losing any
client’s update due to different factors such as latency.

Client Selection for Aggregation Phase. Several papers
address the client selection problem at the aggregation phase
to reduce the overall communication cost [10]–[13], [20], [21].
Papers focus on different goals, such as bandwidth alloca-
tion [20], and minimizing communication cost [11]. Authors
in [13] propose a client selection algorithm to maximize the fi-
nal accuracy of the global model where the server tests clients’
locally updated models and chooses the top-R clients with the
highest accuracy for aggregation. Cho et al. in [12] propose
a centralized client selection algorithm in which clients with
higher loss over their local dataset are selected for aggregation.
Authors in [10] proposed an algorithm to minimize the total
number of convergence rounds whilst guaranteeing the model
convergence, while our focus is on making a trade-off between
the model convergence and the overall communication cost.

Though, client selection in both phases has been studied, to
their best of knowledge past works did not explicitly consider
the trade-off between communication and model performance
(via test loss). Thus, we study client selection during the

aggregation phase while considering the trade-off between
these two. We do this by running small batches of local
testing over a globally-shared small validation dataset (SVD).
We then let the clients independently decide to participate in
aggregation upon performing this local testing.

III. PROBLEM FORMULATION

System Setup. We consider a system with one server and K
clients such that clients are connected to the server through a
wireless connection. Given the mentioned system, FL employs
a global loss function F (w,D) over dataset D to facilitate the
learning process where at each round t (t ∈ {1, · · · , τ}), a
random subset of clients of size max(1, bC·Kc) are selected to
train the model locally, where C ∈ (0, 1] indicates the selection
rate parameter. In round t, we denote the set of selected
clients to train as St and clients participating in aggregation
by sending their locally-updated models to the server as Vt.

Problem Formulation. Here, we present a mathematical
formulation for making a trade-off between the communication
cost due to sending the locally-updated models from clients
to the server and the final loss value in FL. We design an
optimization model to minimize the the overall communication
cost whilst guaranteeing a specific level of final loss value. For
the sake of this work, we focus on the communication cost
caused by sending locally-updated models from clients to the
server. We assume that the cost of broadcasting the global
model from server to the clients is negligible [9], [11]–[13].
To minimize the communication cost, we make a decision
for selecting a portion of clients to send their locally-updated
models whilst providing a competitive level of final loss.

We introduce the Communication-Aware Client Selection
Problem (CASP), which aims to minimize the overall com-
munication cost on the client side such that the trained FL
model achieves a pre-defined desired threshold of loss value,
ld. Note that ld represents a pre-defined/given desired goal loss
value. Each client k has a local training dataset Dk to train the
model locally. At round t, the server sends the global model
with parameters wt, to the selected clients, St, to train the
model locally and update the local weights. Then, a subset
Vt of these selected clients, St, send their locally-updated
weights to the server where Vt ⊆ St. We define ckt ∈ (0, 1]
as the known (normalized) communication cost of sending the
updated model parameters from client k to the server at round
t. The normalized communication cost may represent various
aspects (e.g., energy, bandwidth) related to data transmission
without needing to change the problem definition. Once the
server receives the local weights, it updates the global weights
of round t+ 1, wt+1, as:

wt+1 ,
K∑
k=1

nk
n
wkt+1, (1)

where nk is the number of data items of client k and n ,∑K
k=1 nk is the total number of data items across all clients.

wkt+1 is the model parameters of the local model hosted by
client k in time-step t+1, and wt+1 is the parameters of global



model at t + 1. For the CASP, we define a decision variable
xkt = 1 if and only if client k is selected to send its locally-
updated model to the server at round t, and 0 otherwise. We
define Vt , {k ∈ St|xkt = 1} as the set of selected clients to
send their updated models to the server. For training, let local
model weights wkt+1 for each client k to be the following:

wkt+1 =

{
wt − η∇F (wt,Bk) if k ∈ Vt
wt otherwise

(2)

where η is the fixed learning rate, F (wt,Dk) is the loss of
using weights wt on client’s local data Dt, ∇`(wt;Dk) is
average gradient from the loss function. In Eq. (2), the first
case corresponds with client k participating in aggregation in
time-step t; the second case is for when client k does not
participate in aggregation so that aggregation uses the global
model’s weights wt for that client. The global loss function of
round t is denoted by F (wt,D) where D represents the test
dataset available at the server.1 Thus, CASP is defined below:

min:
K∑
k=1

τ∑
t=1

ckt x
k
t (3)

s.t.: F (wτ ,D) ≤ ld (3a)
K∑
k=1

xkt ≥ 1 ∀t ∈ {1, · · · , τ} (3b)

xkt ∈ {0, 1} ∀k ∈ {1, · · · ,K}, t ∈ {1, · · · , τ} (3c)

The objective in Eq. (3) minimizes the total communication
cost of FL from clients’ side over τ rounds by choosing the
minimum number of clients participating in the aggregation
phase, where τ is a large integer value to guarantee that the
problem is feasible. (3a) ensures the test loss obtained by the
global model with weights of the last round, wτ , is less than or
equal to the desired goal loss, ld. (3b) ensures each round has
at least 1 participating client in aggregation phase. (3c) states
that the decision variable is binary.

A. Problem Complexity

Robustly proving this problem is NP-hard is not straight-
forward due to the intrinsic reliance on the optimization algo-
rithms (e.g., stochastic gradient descent) to perform the local
model training to update local model weights wkt+1 (∀k, t).
As can be seen in Eq. (1), wt+1 depends on the values of
wkt+1 (∀k, t). Because the values of wkt+1 (∀k, t) are not pre-
determined and are updated throughout the decision-making
process based on our binary decision variable, xkt , it is not ob-
vious to approach the complexity of this problem as a standard
ILP problem. Instead, the provided optimization framework for
the CASP is used to give a sense of what the optimal solution
for our problem would look like — where the minimum
number of clients are selected to meet our loss threshold
of ld. However, because the model architectures of interest
for FL (e.g., neural networks with many layers comprised

1Note that the our problem definition is general and works for any loss
function (e.g., cross-entropy, Hinge, mean squared error) [22].

of multiple neurons/units) consist of a composition of many
convex/concave functions [23], the resulting architectures are
often non-convex or non-concave. Global maximization of
non-convex and global minimization of non-concave functions
are both NP-hard problems [24]. This suggests that the CASP
is likely a hard problem. However, a robust NP-hardness
proof is beyond the scope of this work due to the the fact
that decisions related to xkt depend on optimization of non-
conxev/non-concave functions. Therefore, exact approaches to
CASP, based on a commercial integer programming solver, are
unlikely to be applicable in a realistic client selection problem
due to their size from a performance perspective. With that
in mind, next section presents an adaptive distributed client
selection algorithm to generate efficient solution for CASP.

IV. PROPOSED ALGORITHM

As discussed, to generate fast, high quality solutions, em-
ploying heuristic approach is inevitable. Based on our initial
observations, after few rounds, local model test loss of some
clients will be very similar to the global model test loss while
some other clients may still show large test loss computed
over a given small validation dataset. The large loss value on
clients side means that they still have some data items which
the global model does not perform well on them. Based on this
observation, we believe it is possible to collect locally-updated
parameters from fewer than the total set of max(1, bC ·Kc)
selected clients. If correct, this would reduce communication
cost. Thus, we propose a distributed client selection algorithm
that clients make real-time decisions on whether they should
participate in aggregation phase in a given round or not. The
goal is to reach the desired final loss value ld.

Small Validation Dataset (SVD). We consider a Small
Validation Dataset (SVD) that the server broadcasts to the
clients only once before starting the first round. The SVD
has a uniform distribution of labels for consistency. The SVD
is used for quick evaluations of local model performance in
terms of loss. We assume both the server and the clients have
a copy of SVD . The server selects a small, static subset of
test dataset (i.e., SVD⊂ D) and sends it to all clients willing
to participate in FL process before the first round.

The pseudocode for our algorithm, Distributed Client Selec-
tion (DCS), is presented in Algorithm 1. Here, we describe the
intuition behind our algorithm. In each round, our algorithm
first finds the test loss of the global model (lt) using the small
validation dataset, F (wt,SVD) (line 4). Then, it randomly
selects a set of clients with size |St| = max(1, bC · Kc) to
build set St (line 6). The server then distributes the global
model with parameters wt alongside the loss of global model
computed at round t over SVD , lt, to the selected clients St.
Then, the clientside procedure will start (line 9). The
clients in set St start to train the global model using their own
unique local training data (line 3 of clientside procedure).
Then, each client i ∈ St tests its locally-updated model over
SVD and finds the loss lit. If it holds that lit ≥ lt for client i,
then client i will send its locally-updated model parameter wit
to the server (line 4-6 of clientside procedure). When the



Algorithm 1: Proposed DCS
1 Procedure serverside()

Input : SVD , K, C, ld
Output: Trained global model parameters wτ

2 Initialize global model with parameters w0;
3 Send small validation dataset SVD to all clients

∀k ∈ K;
4 Initialize lt←F(w0,SVD);
5 while lt ≥ ld do
6 St ← subset of max(1, bC ·Kc) random clients;
7 Vt ← {};
8 for each selected client i ∈ St in parallel do
9 ans← clientside(i,wt, lt);

10 if ans 6= 0 then Vt ← Vt ∪ {ans} ;

11 if Vt = ∅ then ∀i ∈ St receive updates;
12 wt+1 ← updated global parameters via Eq. (1).

lt ← F (wt,SVD);

13 return wτ ;

1 Procedure clientside(i, wt, lt)
Input : Client ID i, Server parameters wt, lt
Output: Local model parameters wit if participating in

aggregation phase.
2 if w 6= null then
3 wit ← update weights with local training data;
4 lit = F (wit,SVD);

5 if lit ≥ lt then return wit ;
6 else return 0 ;

server receives a new update from a client, it adds that client
to the set Vt to use for aggregation (line 10). If the server does
not receive any update from any client, it will ask all clients to
send their locally-updated models (line 11). Finally, the server
aggregates the received locally-updated models using Eq. 1
with model parameters equal to Eq. 2 (line 12). This repeats
until the global test loss meets a desired loss value ld (line 6).

V. EXPERIMENTAL RESULTS

A. Experimental Design

Baseline Algorithms. We chose 2 algorithms as base-
lines, namely Standard FL [9] (FedAvg), and Power-of-
Choice (PoC) [12]. The PoC selects d ≥ max(1, C·K) number
of clients in each round for training phase. After training
using their local dataset, they send back their updates to the
server. Finally, server chooses max(1, C ·K) number of clients
with higher loss value over their local dataset for aggregation
phase [12]. We run PoC’s algorithm for d = K(C + 0.1).

Model Architectures & Data. We implement our DCS
algorithm in Python 3 and consider deep learning models using
the PyTorch API. We consider 3 datasets to evaluate DCS
in terms of communication cost-loss trade-off: MNIST [25],
Fashion-MNIST (FMNIST) [26], and CIFAR-10 [27]. For
our experiments, we consider a simple convolutional neural
network (CNN) model for training over each dataset assuming
the data is distributed among clients in a Non-Independent,
Identically Distributed (Non-IID) fashion. Our CNNs incor-
porate the ReLU activation function and we use cross-entropy
as the loss function, F (w,D) [22]. Code for this work and

the considered CNNs can be found at [28]. Both the FMNIST
and the MNIST data consist of 60,000 and 10,000 images
for training and testing, respectively. For the Non-IID data
distribution for both MNIST and FMNIST, data are sorted by
label then divided into 200 contiguous shards of size 300,
and all the K = 100 clients are given 2 random shards each,
similar to [9]. For the CIFAR-10 dataset which consists of
50,000 training images and 10,000 testing images, the Non-
IID setting consists of 200 contiguous shards each consisting
of 250 images. Additionally, we use Eq. (1) for aggregation.

Parameters. We consider K = 100 clients. Unless other-
wise stated, we uniformly sample a random value from the
range ckt ∈ (0, 1] (∀k, t) for each client k’s communication
cost. For simplicity, we assume the ckt is fixed during all
training rounds for each client (i.e., ckt′ = ckt (∀t, t′ ∈ τ)).
We perform numerical experiments to investigate the effect
of distribution of ckt in our experiments in the results. Each
client has a local minibatch size of B = 10 and a number
of local epochs of E = 5 for local training. We set the
learning rate η = 0.001. We initialize a random set of initial
model parameters w0 for the global DNN model and fix the
random seed for all experiments. The test data batch size is
128. We set the ld to be equal to the test loss value of global
model trained by the Standard FL lFL at a given number of
rounds for each dataset plus an small error margin ε (i.e.,
ld = lFL + ε). Note that ld can be set to any other value in
the real world and the reason that we set it to the test loss
value of global model trained by the Standard FL plus an
small error margin ε is to have a fair comparison against the
Standard FL. For MNIST and FMNIST, we set the number of
FL rounds to 100 and for CIFAR-10 we set the number of FL
rounds to 200. For the PoC baseline algorithm we define the
number of rounds similarly. Note that for our proposed DCS
algorithm the number of rounds is not fixed and the algorithm
stops whenever the desired goal loss ld is achieved. We set
ε = 0.01. We repeat each experiment for different fractions of
users, namely, C = 0.1, 0.3, 0.5, 0.7, 0.9.

SVD Selection. We randomly select 200 images from the
test datasets of each considered dataset with an equal number
of images per labels to avoid bias toward a specific label.

B. Results & Discussion

We investigate the final loss value of the global model
by testing it over the large test dataset which is assumed
to be available on the central server. We also investigate the
effect of error margin ε on the total communication cost. We
define the Total Communication Cost (TCC) as the sum of the
communication cost of all clients spent over all rounds which
they participated in the aggregation phase via communicating
their locally-updated models, thus TCC =

∑K
k=1

∑τ
t=1 c

k
t x

k
t .

Additionally, we define the Communication Cost Ratio (CCR)
as CCR = DCS TCC

FedAvg TCC . Thus, the lower CCR, the more signifi-
cant the provided gain w.r.t. communication cost reduction.

Communication Cost-loss Trade-off. Here, we discuss the
communication-cost trade-off that DCS provides compared to
the baseline. We tested some scenarios when C < 0.5, and



0 150 300
Rounds

1.5

2.0

C
IF

A
R

-1
0

 L
os

s

C = 0.5

0

2000

4000

TC
C

C = 0.5

0 100 200
Rounds

1.0

1.5

2.0

Lo
ss

C = 0.7

0

2500

5000

TC
C

C = 0.7

0 100 200
Rounds

1.5

2.0

Lo
ss

C = 0.9

0

5000

TC
C

C = 0.9

0 50 100
Rounds

1

2

FM
N

IS
T

 L
os

s

C = 0.5

0

1000

2000

TC
C

C = 0.5

0 50 100
Rounds

1

2

Lo
ss

C = 0.7

0

2000

TC
C

C = 0.7

0 50 100
Rounds

1

2

Lo
ss

C = 0.9

0

2000

4000

TC
C

C = 0.9

0 50 100
Rounds

1

2

M
N

IS
T

 L
os

s

C = 0.5

0

1000

2000

TC
C

C = 0.5

0 50 100
Rounds

0

1

2
Lo

ss
C = 0.7

0

2000

TC
C

C = 0.7

0 50 100
Rounds

0

1

2

Lo
ss

C = 0.9

0

2000

4000

TC
C

C = 0.9

DCS FedAvg PoC

Fig. 1: Total Communication Cost (TCC) vs. Final Global Model Loss Over Large Test Dataset

ε = 0.01 and the improvement of communication cost was
not significant compared to the baseline. Because, in these
scenarios we do not have enough freedom to choose best
clients in each round when C < 0.5 and K = 100. Therefore,
we focus on C ≥ 0.5 for the results section. As shown in
Fig 1, our algorithm outperforms both the FedAvg and PoC
algorithms in terms of TCC minimization whilst still providing
almost equal amount of final test loss value of global model
with the error margin ε = 0.01. In most of cases, DCS stops
sooner than the baseline algorithms as shown in Fig 1. In
few cases such as in CIFAR-10, when C = 0.5, the number
of total rounds of our algorithm is slightly more than the
baselines. However, the TCC value of DCS is still less than
that of the baseline algorithms; so that, it still beats the baseline
algorithms in terms of total communication cost reduction.

Moreover, we define Communication Cost Reduction Ra-
tio (CCRR) as CCRR = 1 − DCS TCC

Baseline TCC for each baseline
showing how much communication cost reduction we gained
compared to that baseline. In average, the CCRR of three
datasets is equal to 27.39%, 37.06%, 33.58% for MNIST, FM-
NIST, and CIFAR-10 in comparison to FedAvg, and 63.76%,
39.89%, and 30.49% in comparison to PoC, respectively.

Impact of ε on CCR. For some applications (e.g., IoT
environments where the communication is costly), the com-
munication cost is much more important than a small error
w.r.t. the goal loss error ε. We investigate the effect of ε on
CCR to find the impact of error margin on the communication
cost-loss trade-off when C = 0.5 over all three datasets. As
presented in Table I, when we increase the error margin, the
communication cost will decrease for DCS compared to the
FedAvg. The reason is that DCS algorithm stops whenever

TABLE I: Comm. Cost Ratio (CCR) vs. ε Error Margin.

DCS’s Comm. Cost Ratio

Error Threshold CIFAR-10 FMNIST MNIST

ε = 0.01 0.7270 0.4940 0.6029
ε = 0.02 0.7270 0.4940 0.6029
ε = 0.03 0.7270 0.4940 0.6029
ε = 0.04 0.7270 0.4940 0.6029
ε = 0.05 0.7251 0.4881 0.5972
ε = 0.06 0.7016 0.4374 0.5671
ε = 0.07 0.6601 0.4009 0.5156
ε = 0.08 0.6483 0.3742 0.4780
ε = 0.09 0.6304 0.3629 0.4780
ε = 0.10 0.6279 0.3261 0.4045

it meets the goal loss plus the error margin. Hence, when
the error margin is large, DCS stops sooner and will not run
for next rounds. This process provides the trade-off between
the communication cost and the final loss value of the global
model. Hence, our algorithm can perform well in terms of
making a better trade-off between overall communication cost
and the final loss value for these kinds of applications.

Impact of Clients Communication Cost Distribution on
Total Communication Cost. IoT devices are usually hetero-
geneous in terms of communication capacity. To investigate
the effect of communication cost distribution of users on
DCS, we adjust the distribution of communication costs of the
clients that participate in aggregation phase. We use normal
distribution to generate the communication cost of each client
and investigate the total communication cost of each algorithm
over 1000 Monte Carlo runs for different values of mean and
variance and set ε = 0.01. Our results in Fig. 2 for C values of
0.1 and 0.9 imply that the proposed DCS algorithm performs



0.3 0.5 0.7

5000

10000

15000

TC
C

C = 0.1 | alg = DCS

0.3 0.5 0.7

C = 0.1 | alg = FedAvg

0.3 0.5 0.7

C = 0.1 | alg = PoC

0.3 0.5 0.7
mean

5000

10000

15000

TC
C

C = 0.9 | alg = DCS

0.3 0.5 0.7
mean

C = 0.9 | alg = FedAvg

0.3 0.5 0.7
mean

C = 0.9 | alg = PoC

std
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Fig. 2: Total Communication Cost (TCC) vs. Clients’ Com-
munication Cost Distribution

better in terms of total communication cost reduction in all
cases and considering non-uniform communication cost of the
clients in the network. Even when we change the std of normal
distribution to 0.9, our algorithm still performs well.

The Communication Overhead of DCS. DCS algorithm
has no communication overhead aside from sending the SVD
from the server to the clients only once before the first round
(SVD is fixed during the FL rounds). Since the focus of this
paper is the communication cost of clients, sending SVD from
server to clients does not affect clients’ communication cost.

VI. CONCLUSION

This paper studies client selection for federated learn-
ing (FL) while considering the trade-off between the final
loss of global model and the communication cost on the
client side to upload their locally-updated models. We cast
this problem as an optimization problem and propose a novel
distributed algorithm, which we call DCS, where clients decide
to send their locally-updated model weights based on test
loss using a small shared dataset provided by the server.
We compare our proposed algorithm with standard federated
learning and a state-of-the-art client selection algorithm, called
Power-of-Choice (PoC), in terms of final loss and the overall
communication cost. Our results demonstrate that our DCS
algorithm is able to reduce the communication cost associated
with uploading the locally-updated model weights for aggre-
gation in FL by more than 32.67% and 44.71% on average in
comparison to standard FL and PoC, respectively.

ACKNOWLEDGMENT

This work is funded by research grant provided by the
National Science Foundation (NSF) under the grant number
1948387.

REFERENCES

[1] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[2] N. Hudson, M. J. Hossain, M. Hosseinzadeh, H. Khamfroush,
M. Rahnamay-Naeini, and N. Ghani, “A framework for edge intelligent
smart distribution grids via federated learning,” in 2021 International
Conference on Computer Communications and Networks (ICCCN).

[3] X. Zhao, M. Hosseinzadeh, N. Hudson, H. Khamfroush, and D. E. Lu-
cani, “Improving accuracy-latency trade-off of edge-cloud computation
offloading for deep learning services,” in IEEE Globecom Workshop on
Edge Learning over 5G Networks and Beyond, 2020.

[4] M. Hosseinzadeh, A. Wachal, H. Khamfroush, and D. E. Lucani, “Opti-
mal accuracy-time trade-off for deep learning services in edge computing
systems,” in IEEE International Conference on Communications, 2021.

[5] N. Hudson, H. Khamfroush, and D. E. Lucani, “QoS-aware placement
of deep learning services on the edge with multiple service implemen-
tations,” in 2021 IEEE ICCCN, 2021, pp. 1–8.

[6] M. Hosseinzadeh, N. Hudson, X. Zhao, H. Khamfroush, and D. E.
Lucani, “Joint compression and offloading decisions for deep learning
services in 3-tier edge systems,” in IEEE DySPAN, 2021.

[7] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[8] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017.

[10] W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication
overhead for federated learning,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS).

[11] M. Ribero and H. Vikalo, “Communication-efficient federated learning
via optimal client sampling,” arXiv preprint arXiv:2007.15197, 2020.

[12] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning:
Convergence analysis and power-of-choice selection strategies,” arXiv.

[13] I. Mohammed, S. Tabatabai, A. Al-Fuqaha, F. El Bouanani, J. Qadir,
B. Qolomany, and M. Guizani, “Budgeted online selection of candidate
iot clients to participate in federated learning,” IEEE IoT Journal, 2020.

[14] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in IEEE ICC, 2019.

[15] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. on Wireless Communications, 2020.

[16] T. Huang, W. Lin, W. Wu, L. He, K. Li, and A. Zomaya, “An efficiency-
boosting client selection scheme for federated learning with fairness
guarantee,” IEEE Trans. on Parallel and Distributed Systems, 2020.

[17] S. AbdulRahman, H. Tout, A. Mourad, and C. Talhi, “Fedmccs: multi-
criteria client selection model for optimal IoT federated learning,” IEEE
Internet of Things Journal, vol. 8, no. 6, pp. 4723–4735, 2020.

[18] N. Yoshida, T. Nishio, M. Morikura, and K. Yamamoto, “Mab-based
client selection for federated learning with uncertain resources in mobile
networks,” in 2020 IEEE Globecom Workshops (GC Wkshps).

[19] Y. J. Cho, S. Gupta, G. Joshi, and O. Yağan, “Bandit-based
communication-efficient client selection strategies for federated learn-
ing,” in 2020 54th Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2020, pp. 1066–1069.

[20] J. Xu and H. Wang, “Client selection and bandwidth allocation in
wireless federated learning networks: A long-term perspective,” IEEE
Trans. on Wireless Communications, 2020.

[21] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. A. Jarvis, “Safa: a semi-
asynchronous protocol for fast federated learning with low overhead,”
IEEE Transactions on Computers, 2020.

[22] K. P. Murphy, Machine learning: a probabilistic perspective. MIT.
[23] P. Jain and P. Kar, “Non-convex optimization for machine learning,”

arXiv preprint arXiv:1712.07897, 2017.
[24] K. G. Murty and S. N. Kabadi, “Some NP-complete problems in

quadratic and nonlinear programming,” Tech. Rep., 1985.
[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[26] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms,” arXiv.

[27] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[28] “Khamlab github page for fed-mec project,,”
https://github.com/khamfroush-lab/Fed-MEC/tree/master/Distributed-
Client-Selection-FL.


