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Abstract—Task offloading in edge computing infrastructure
remains a challenge for dynamic and complex environments,
such as Industrial Internet-of-Things. The hardware resource
constraints of edge servers must be explicitly considered to ensure
that system resources are not overloaded. Many works have stud-
ied task offloading while focusing primarily on ensuring system
resilience. However, in the face of deep learning-based services,
model performance with respect to loss/accuracy must also be
considered. Deep learning services with different implementations
may provide varying amounts of loss/accuracy while also being
more complex to run inference on. That said, communication
latency can be reduced to improve overall Quality-of-Service by
employing compression techniques. However, such techniques can
also have the side-effect of reducing the loss/accuracy provided
by deep learning-based service. As such, this work studies a joint
optimization problem for task offloading decisions in 3-tier edge
computing platforms where decisions regarding task offloading
are made in tandem with compression decisions. The objective
is to optimally offload requests with compression such that the
trade-off between latency-accuracy is not greatly jeopardized. We
cast this problem as a mixed integer nonlinear program. Due to
its nonlinear nature, we then decompose it into separate sub-
problems for offloading and compression. An efficient algorithm
is proposed to solve the problem. Empirically, we show that our
algorithm attains roughly a 0.958-approximation of the optimal
solution provided by a block coordinate descent method for
solving the two sub-problems back-to-back.

Index Terms—Task Offloading, Compression, Edge Comput-
ing, Deep Learning, Network Optimization, Industrial Internet-
of-Things

I. INTRODUCTION

Exponential technological growth has been a defining qual-
ity of the 21st century. This growth led to the development of
the Industrial Internet-of-Things (IIoT) where smart sensors,
devices, digital storage units, instruments, etc. are intercon-
nected through the Internet to aid the needs of industry [1]. In-
dustrial sectors (e.g., manufacturing [2]) can be supplemented
by the IIoT by providing comprehensive data collection, shar-
ing, and processing across network devices. A key enabling
technology for IIoT is that of Edge Computing (EC) [3]. Under
the EC paradigm, compute resources are pushed to the network
edge to provide more opportunity for IIoT devices (e.g., smart
sensors) to have data they collect/generate/sense processed
more immediately than if they were to solely rely on a faraway
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central cloud server [4]. This is done by the deployment of
edge servers (or edge servers) that process requests/data closer
to end users. Following the growing popularity of EC, the
notion of Edge Intelligence (EI) has also risen in popularity.
EI pushes AI services, namely Machine Learning (ML) and
Deep Learning (DL) services, to the network edge. EI allows
for data collected/generated/sensed at the network edge to
be immediately processed without needing to relay all IIoT-
generated data to be sent to a faraway central cloud [5].

The benefits of EC [6] (e.g., reduced latency, increased
scalability, improved reliability), making EI all the more
attractive for providing reliable intelligent services [7], [8].
However, the hardware resources (e.g., communication, com-
putation, and storage capacities) available at the edge servers
are relatively constrained when compared to central cloud
servers and these limitations must be explicitly considered [9]–
[11]. Many works studying problems related to EC study
the optimization of the resources equipped to edge servers
to optimally serve user requests. One such problem is that
of request offloading (or task offloading/scheduling). Request
offloading to edge server-hosted services has been widely
studied for both general [9], [12] and deep learning-based
services [13], [14]. The problem of request offloading aims
to decide where requests should be sent in the system to be
processed (i.e., which edge server should serve a given request)
while being mindful of system resources and incurred latency.
Typically, the primary objective of offloading problems is to
minimize latency experienced by end users [9], [15].

One viable approach for reducing the latency for transmit-
ting data across communication channels is to reduce the size
of data transmitted over the communication channel through
compression techniques [16]–[18]. Beyond minimizing com-
munication latency, compression has also been considered
for the purposes of minimizing energy consumption incurred
from data transmission in EC systems for general service
requests [19]. However, the applicability of compression tech-
niques faces an additional challenge for deep learning-based
services. It is important to note that compression techniques
can largely be split into 2 groups: lossless and lossy. Lossless
compression does not compromise data quality when it is
uncompressed; however lossy compression provides much
greater data size reduction [20]. Since the performance of DL-
based services relies on data quality, compression techniques



that harm data quality can compromise the loss/accuracy of
the DL-based service. Thus, there is a trade-off between how
much we compress data in service requests to reduce latency
while not jeopardizing model accuracy too greatly.

This paper studies an offloading problem with the objective
of optimizing the latency-accuracy trade-off for requests for
DL-based services in 3-tier EC platforms while consider-
ing compression. We define this problem, Compression and
Offloading Decisions on the Edge (CODE), as a mixed integer
nonlinear program. The CODE problem is similar to the
problem studied in a prior work [13]. The novelty of the CODE
problem is the joint consideration of both compression and
offloading for DL-based service requests while considering
more than 1 service request at a time. Further, CODE assumes
edge servers can offload requests to other edge servers through
device-to-device (D2D) communication channels. Finally, this
paper proposes a polynomial-time algorithm for approaching
the CODE problem. Our algorithm is empirically shown to
achieve a 0.958-approximation of the near-optimal solution
which is given by a block coordinate descent method [21].

II. RELATED WORK

Here, for the sake of brevity, we briefly summarize the
literature related to task offloading problems in edge com-
puting systems. Prior works studying the request offloading
problem in 3-tier EC platforms typically employ optimization
techniques (e.g., linear programming, stochastic modeling) to
either maximize the number of requests that were served
under edge server hardware constraints [9], [10] or minimize
overall latency provided to end users submitting requests [22],
[23]. There are few recent works that jointly study offloading
and compression decisions in EC systems. Xu et al. in [19]
jointly studies resource allocation, task offloading, and data
compression under edge server resource constraints while
aiming to minimize energy consumption. They transform a
non-convex optimization model into a convex problem and
apply convex optimization to solve this joint problem. Elgendy
et al. in [24] consider a similar joint optimization for resource
allocation, data compression, and security. They show their
non-convex joint optimization is NP-hard and use relaxation
and linearization techniques to solve a convex version of the
problem. However, a limitation of these prior works is that they
are for general services available in EC systems. They do not
consider the loss/accuracy provided by a DL-based service.
Hosseinzadeh et al. in [14] study task offloading in a 3-tier
EC platform while considering the latency-accuracy trade-off
as the objective. However, that work fails to consider compres-
sion to reduce latency without greatly compromising model
loss/accuracy. Zhao et al. in [13] study request offloading in 3-
tier EC platforms by considering a simple environment where
only 1 request is consider. Additionally, only 1 edge server is
considered to simplify the problem.

The main contributions of our work to the task offloading
problem include: (i) design of a mixed integer nonlinear
program that jointly considers offloading and compression
decisions for requests for DL-based services that aims to
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Fig. 1. Illustrative overview of our considered 3-tier architecture.

optimize the latency-accuracy trade-off; (ii) consideration of a
complex 3-tier EC platform with multiple service requests and
device-to-device (D2D) communication among edge servers
to collaboratively process requests; and (iii) design of a
polynomial-time iterative algorithm for solving CODE that
empirically achieves a 0.958-approximation of the optimal
solution provided by directly solving CODE using a block
coordinate descent method [21].

III. SYSTEM DESIGN & CODE PROBLEM DEFINITION

A. 3-Tier System Architecture

We consider a 3-tier edge computing system architecture.
The topmost tier of this architecture is a central cloud server.
The middle tier is a layer of edge servers deployed at the net-
work edge. The bottom tier is the user device tier, comprised
of IoT and IIoT devices. At any given time in the system, we
consider a set of user requests submitted by the user devices
in the user device layer. We denote the set of requests by N .
For this work, we assume each request i ∈ N corresponds
with a single user (hence we may use “users” and “requests”
interchangeably). We also denote the set of edge servers by
M. The edge server that directly covers a user device i ∈ N
is denoted by wi. The central cloud server will commonly be
referred to by c throughout the paper.

Before defining the problem, we clarify two points of the
system. First, edge servers and cloud servers have a maximum
number of requests they are able to process in the considered
time window. We refer to this as the admission capacity.
The admission capacity for edge server j is denoted by vej
and the admission capacity for the central cloud server is
denoted by vc. All entities in the system (i.e., user devices,
edge servers, and the central cloud server) have hardware
resources associated with them. Because this paper is focused
on offloading specifically, we only consider communication
and computation resources. The notation for these will be
presented later in §III-D.

B. Compression and Machine Learning Accuracy

In our prior work [13], we experimentally showed that
image compression techniques based on DCT transforms, e.g.,
JPEG, reduce the expected accuracy of a machine learning
model in a non-linear fashion when removing high frequency
DCT coefficients, e.g., by giving them a zero value. More



precisely, removing DCT coefficients initially has little to no
effect in accuracy initially. There exists an inflexion point,
dependent on the model, where additional compression results
in dramatic loss of accuracy. We showed that this relation-
ship between image compression and expected accuracy of a
machine learning model can be fitted using the asymmetric
Gompertz growth curve function [25], [26]:

g(s) = a · exp(−b · exp(−c · s)) (1)

where a, b, c ∈ R+ are parameters and s ∈ [0, 1] is the scaling
factor we use for data compression (i.e., s = 0.95 means the
data size of the compressed image will be roughly 95% that
of its original data size).

We will use the same compression method of [13] and the
Gompertz approximation to control the compression level for
image transmissions through the network during offloading to
edge or cloud server. The goal is change the compression level
to minimize the latency-accuracy metric of our system.

C. CODE Problem Definition

Here, we define the Compression and Offloading Decisions
on the Edge (CODE) problem as a mixed integer nonlinear
program (MINLP). CODE jointly considers offloading and
compression decisions. Thus, we consider 4 decision variables:
3 binary offloading decisions (x, y, z) and 1 continuous
compression decision (s). First, we let decision variable x ,
(xi)∀i∈N = 1 iff request i is processed locally using the
requesting user’s own local hardware resources, 0 otherwise.
Second, we let decision variable y , (yij)∀i∈N ,j∈M = 1 iff
request i is processed by edge server j, 0 otherwise. Third, we
let a set of decision variables z , (zi)∀i∈N = 1 iff request i
is processed on the remote central cloud, 0 otherwise. Finally,
we consider a decision variable s , (si)∀i∈N ∈ [0, 1] which
corresponds to the compression rate used to compress the data
associated with request i prior to processing (i.e., si represents
the size of request after compression). Below, we present the
definition of the CODE problem, dubbed as P1 for short:

P1 : min
x,y,z,s

L− αA (2)

subject to L ≤ Lmax (2a)
A ≥ Amin (2b)

xi +
( ∑
j∈M

yij

)
+ zi = 1 (∀i ∈ N ) (2c)∑

i∈N
yij ≤ vej (∀j ∈M) (2d)∑

i∈N
zi ≤ vc (2e)

xi, yij , zi ∈ {0, 1} (∀i ∈ N , j ∈M) (2f)
0 ≤ si ≤ 1 (∀i ∈ N ) (2g)

The pareto objective, defined in Eq. (2), aims to minimize the
trade-off between average latency, L, and average accuracy,
A (with α being a tunable hyperparameter). Note, both L

and A are functions of offloading (x, y, z) and compression
decisions (s). Constraint (2a) ensures that the average latency
is less than or equal to the maximum allowed latency (Lmax).
Similarly, Constraint (2b) guarantees that the average ac-
curacy is greater than or equal to the minimum required
accuracy (Amin). Constraint (2c) guarantees that each request
will be processed locally, by 1 edge server, or the central
cloud. Constraints (2d) and (2e) guarantee that the admission
capacity of the edge servers and the central cloud server are
not exceeded. Note, requests that cannot be processed on an
edge server or the central cloud due to the Constraints (2d)
and (2e) will be processed locally. The last two constraints
ensure that the decision variables are in the defined range.

CODE Problem Complexity. A robust proof of NP-
hardness is beyond the scope of this paper. With the problem
being a mixed integer nonlinear program (MINLP), it has been
shown that both convex and non-convex MINLPs in general
are NP-hard [27]. Hence, we assume that the CODE problem
is difficult to directly solve for the optimal solution.

D. Defining Average Accuracy & Latency
1) Accuracy Definition: Each entity in the system (i.e., user

devices, edge servers, and central cloud) host a ML model to
perform some task (namely, image classification). However,
the models can vary across these entities and thus it follows
that the accuracy provided by these entities varies as well.
Thus, we assume that we have fitted Gompertz functions to
estimate the accuracy of the ML model hosted at each entity
in the system similar to our initial results in [13]. Using
these fitted functions and the compression decisions, s, we
can compute the average accuracy, A, which is used in the
objective for P1. Its definition is found below:

A =
1

|N |
∑
i∈N

(
xig

u
i (1) +

∑
j∈M

yijg
e
j (si) + zig

c(si)

)
(3)

where gui (·) is the Gompertz function fitted for user i’s local
ML model, gej (·) is the Gompertz function fitted for the ML
model hosted at edge server j’s, and gc(·) is the Gompertz
function fitted for the ML model hosted at the central cloud.
Note that no compression is ever performed if the request is
processed locally (i.e., gui (1)). The definitions of the individual
Gompertz functions are based on fitted parameters and Eq. (1).

2) Latency Definitions: The latency incurred to complete
a request i is the sum of both transmission/communication
latency and computation latency. In P1, one of the goals is to
minimize the average latency, L, by making decisions related
to compression and offloading. As such, latency is a function
of both compression and offloading decisions. The definition
we consider for average latency can be found below:

L =
1

|N |
∑
i∈N

(
xiL

u(i) +
∑
j∈M

yijL
e(i, j) + ziL

c(i)

)
(4)

where Lu(i) is the latency to locally process request i, Le(i, j)
is the latency to process request i on edge server j, and Lc(i)
is the latency to process request i on the central cloud server.



Local Latency. If a task is processed locally, then latency
is only a function of local compute latency since no data
transmission is needed to process the task on another device.
Thus, we define local latency on the user-side for user i’s
request, Lu(i), as the following,

Lu(i) =
ci
fui

(5)

where ci is the CPU clock cycles needed to process user i’s
request and fui is the CPU frequency of user i’s device.

User-to-Edge Latency. Tasks processed on the edge require
both communication and computation to be completed. First,
the user i’s request must be transmitted to their covering edge
server, wi, and either processed there or offloaded to another
edge server through device-to-device communication channels.
Once the request is received by the final edge server, it will
be processed, thus incurring additional compute latency. Thus,
we define the user-to-edge latency, Le(i, j), as the latency for
user i’s request to be communicated and processed by edge
server j. It is formally presented below,

Le(i, j) =


sidi
Ru

i
+ ci

fe
j

if j ≡ wi(
sidi
Ru

i
+ sidi

Re
wij

)
+ ci

fe
j

otherwise.
(6)

The first case occurs when j is user i’s covering edge server
(wi). In the first case, only one communication hop and
processing is needed — where Rui is the data transmission
rate from user i to its covering edge server and fej is the CPU
frequency on edge server j. The latter case covers the scenario
where j is not user i’s covering edge server, thus requiring an
additional hop of communication. Here, we note that Rewij

is
the bit rate between edge servers wi and j and di represents
the original size of data in request i.

User-to-Edge-to-Cloud Latency. Finally, we consider the
user-to-edge-to-cloud latency, Lc(i), for any task i that is
offloaded to the central cloud server. It is defined below:

Lc(i) =

(
sidi
Rui

+
sidi
Rcwi

)
+
ci
f c
. (7)

where Rcwi
is the bit-rate between user i’s covering edge server

and the central cloud and f c is the CPU frequency at the
central cloud.

IV. PROBLEM DECOMPOSITION & HEURISTIC DESIGN

Because P1 (provided in §IV) is a nonlinear optimization,
it is hard to solve. As such, rather than solve it directly, we
instead choose to decompose it into two sub-problems, P1.1
and P1.2, that separately focus on the offloading decisions
and compression decision (respectively). Further, we will solve
both sub-problems back-to-back using a block coordinate
descent method [21] to attain a near-optimal solution for P1.
We define the decomposed sub-problems for P1 below:

P1.1 : min
x,y,z

L− αA (8)

subject to Constraints (2a)-(2f) (8a)

Algorithm 1: Proposed PCODE Algorithm
Input : Input parameters to CODE, λ ≥ 2 (int)
Output: Offloading/compression decisions (x, y, z, s).

1 Init decision variables x, y, z, s;
2 Init total latency σL ← 0, total accuracy σA ← 0;
3 Init total number of processed requests η ← 0;
4 Init counterc ← 0, counterej ← 0 (∀j ∈M);
5 C← row-vect. of λ evenly-spaced values from 0 to 1;
6 foreach request i ∈ N in a random order do

/* Consider local processing */
7 π∗u ← E[objui ];
8 xi ← 1, si ← 1;
9 Li ← Lu(i), Ai ← gui (1);

/* Consider offloading to edge */
10 foreach j ∈M do
11 if counterej < vej then
12 ψ∗ej ← argmins∈C E[objeij |s];
13 π∗ej ← E[objeij |ψ

∗
ej ];

14 else
15 π∗ej ←∞;

16 j∗ ← argminj∈M π∗ej ;
17 if edge offloading is better, i.e., π∗ej∗ < π∗u then
18 yij∗ ← 1, si ← ψ∗ej ;
19 xi ← 0;
20 Li ← Le(i, j∗), Ai ← gej∗(ψ

∗
ej∗);

/* Consider offloading to cloud */
21 if counterc < vc then
22 ψ∗c ← argmins∈C E[objci |s];
23 π∗c ← E[objci |ψ

∗
c ];

24 if cloud offloading is best, i.e.,
(π∗c < π∗u) ∧ (π∗c < π∗ej∗) then

25 zi ← 1, si ← ψ∗c ;
26 xi ← 0, yij∗ ← 0;
27 Li ← Lc(i), Ai ← gc(ψ∗c );

28 Increment counter variables for edge and cloud based
on offloading decision;

29 σL ← σL + Li, σA ← σA +Ai, η ← η + 1;

30 return x, y, z, s;

P1.2 : min
s

L− αA (9)

subject to Constraints (2a), (2b), (2g) (9a)
A ≥ 0.368 ·Apmax (∀p ∈ {u, e, c}) (9b)

where Apmax represents the maximum provided accuracy by the
user layer (p = u), edge layer (p = e), and cloud layer (p = c).
Since the Gompertz function has both concave and convex
parts, we introduce the constraint (9b) to guarantee that we
only consider the concave part, which is convex in the negative
form. Because the objective of this problem is convex, the
constraints should be concave — meaning a nonlinear solver
can solve P1.2 directly.

A. Efficient Algorithm Design

We propose an efficient algorithm to solve P1. This algo-
rithm approaches P1 in an iterative manner by considering
each user request i ∈ N and greedily makes offloading



and compression decisions based on the expected gain to the
objective of P1. The pseudocode for the proposed algorithm is
presented in Algorithm 1. Before explaining the pseudo code
line-by-line, we introduce some mathematical definitions on
which PCODE is based upon. First, to adhere to the Lmax and
Amin constraints (i.e., constraints (2a) and (2b)), our algorithm
uses a moving average that tracks the expected average latency
and average accuracy for requests as decisions are made. For
the moving average, we denote the total latency and total
accuracy by σL and σA, respectively. Next, we denote the
number of requests processed thus far by η.

1) Approximating objective values: The proposed algo-
rithm relies on approximating how an offloading and com-
pression decision for a single user will affect the global
objective using a moving average technique. As such, we
define how these are approximated. Requests can be processed
in 3 ways: local processing, edge-based processing, and cloud-
based processing. First, the estimated objective if a request i
is processed locally is computed by

E[objui ] ,
σL + Lu(i)

η + 1
− α · σA + gui (1)

η + 1
(10)

where σL is the summation of latency across all requests
processed thus far based on prior offloading/compression
decisions, σA is similar but for the summation of accuracies
for previously processed requests, and η is the number of pre-
viously processed requests. Next, we approximate the global
objective if a request i is offloaded to edge server j using
compression s by

E[objeij |s] ,

{
σL+Le(i,j|si=s)

η+1 − α · σA+gej (si=s)

η+1 Ie(i, j)

∞ otherwise
(11)

where Ie(i, j) is an indicator function such that Ie(i, j) = 1

if and only if
(σL+Le(i,j|si=s)

η+1 ≤ Lmax

)
∧
(σA+gej (si=s)

η+1 ≤
Amin

)
, 0 otherwise. Finally, we approximate the global ob-

jective if a request i is offloaded to the central cloud using
compression s by

E[objci |s] ,

{
σL+Lc(i|si=s)

η+1 − α · σA+gc(si=s)
η+1 Ic(i)

∞ otherwise
(12)

where Ic(i) is an indicator function such that Ic(i) = 1 if and
only if

(σL+Lc(i|si=s)
η+1 ≤ Lmax

)
∧
(σA+gc(si=s)

η+1 ≤ Amin

)
, 0

otherwise.
2) Stepping through the Algorithm: PCODE’s input in-

cludes the system parameters and an integer λ ≥ 2 which
is used to generate a (1× λ)-row vector (C) of evely-spaced
values from 0 to 1 (e.g., if λ = 3 then C = [0.0, 0.5, 1.0]). C
is used as a quantized compression value search space. Larger
λ values increase PCODE’s complexity but provides more
space to find good compression decisions for PCODE. With
that said, PCODE starts by initializing decision variables and
other supplemental variables (lines 1-5). Line 6 starts a loop
that iterates through each request i ∈ N in a random order. At
the start of the loop, lines 7-9 approximate the gain towards

the objective for processing request i locally. Then, lines 10-
16 iteratively do the same process but for each of the edge
servers j ∈ M and identifies the edge server that maximizes
the approximated objective value for request i (line 16). On
lines 17-20, PCODE determines if processing request i on the
edge is better for the objective than local processing. If so, then
offloading and compression decisions are changed accordingly
(lines 18-20). Then, lines 21-27 do the same for cloud-based
processing and change offloading and compression decisions
if processing request i is shown to be the best choice (lines
24-27). Lines 28 and 29 then update the variables maintained
throughout the loop to approximate the objective and respect
admission capacities.

Proposition 1. PCODE is a polynomial-time algorithm with
an asymptotic runtime complexity of O(λ · |N | · |M|).

Proof. This can be seen simply be first noting that the outer
loop (lines 6-29) takes place exactly |N | times (i.e., num-
ber of requests). For each iteration through this outer loop,
PCODE also iterates through each of the edge servers (i.e.,
a multiplicative of |M|) to consider edge processing. Finally,
on line 12 (within the loop iterating through M), argmin(·)
iterates over the compression space which has λ elements
(as per its definition). Since the considering local and cloud
processing only occurs once in each iteration through the main
outer loop, their complexity is constant and does not contribute
to the overall runtime. Thus, the runtime is O(λ · |N | · |M|).
This concludes the proof.

The complexity of optimal solution due to having a con-
tinuous decision variable (s) cannot be exactly calculated. We
have observed some cases of 9.5 hours running time, while
our proposed PCODE algorithm runs in 0.7 seconds, for the
same test.

V. EXPERIMENTAL DESIGN

A. Benchmark Algorithms/Heuristics

We demonstrate the efficacy of our proposed algorithm
(presented in §IV-A1) against the following benchmarks:

1) Optimal (OPT): It solves P1.1 and P1.2 back-to-back
over several iterations using block coordinate descent [21]
method which minimizes the objective with respect to one
block at a time while the other block is fixed.

2) Optimal 2 (OPT 2): Its approach is similar to OPT
with this difference that it first solves P1.2 and then P1.1.
For both OPT and OPT 2, we stop running each P1.1 and
P1.2 back-to-back when either the results in terms of objec-
tive converges or a threshold of back-to-back running passes
which is set to 10, here, due to computationally expensive cost
of running these two algorithms. So, the solver might not be
able to find the optimal solution in some cases.

3) No-Compression (NC): It provides optimal offloading
decision assuming that no compression is allowed. It uses
the solver to solve P1.1 with si = 1 (∀i ∈ N ) only one
round and finds the optimal decision for offloading part of the
problem.



4) Fixed-Compression-50 (FC): It solves the offloading
problem with the assumption that compression is allowed only
at a fixed size of si = 0.5 (∀i ∈ N ).

5) Random-Serving-Optimal-Compression (RSOC): It pro-
vides near-optimal compression solution using similar ap-
proach to PCODE by searching compression space assum-
ing random offloading decision. It randomly selects a server
(user/edge/cloud) to serve the requests. If the server is either
edge server or the cloud server and it has enough admission
capacity, it selects the minimum possible data size which min-
imizes the objective; else, it selects another server randomly
and repeats the process again.

6) Random-Serving-Random-Compression (RSRC): It ran-
domly selects one of the servers (user/edge/cloud). If the
server is either edge server or cloud server and it has enough
admission capacity, it selects a random size of compression
from the range of (0, 1]; else, it selects another server randomly
and repeats the process again.

7) Worst-case (W): This algorithm provides a worst case
bound for the objective value. It works similar to PCODE
algorithm with this difference that it always selects the maxi-
mum objective value, i.e., maximizing the average latency and
minimizing the average accuracy.

B. Environment Setup

We use Python language to simulate the problem. We use
Pyomo to solve the optimization problem with glpk and ipopt
solvers [28]. We consider a simulation environment with the
following setup. We simulate the accuracy of DL models
using a Gompertz function for the cloud server, edge servers,
and users’ devices. These is used to predict the DL model’s
accuracy based on compression decisions (see §III-B). The
Gompertz arguments used for the DL model placed on the
cloud server, a = 0.95, b = 20, and c = 1; for the
DL model placed on the edge servers, a = 0.70, b = 6,
and c = 18; and for the DL model placed on the user
devices, a = 0.45, 50, and c = 20. These are similar to
the curves fitted for state-of-the-art DL models in our prior
work [13]. Next, the CPU clock cycles to process request i
are uniformly sampled from ci ∈ [150, 156] (∀i ∈ N ).
The size of request i’s data (in bytes) is uniformly sampled
from di ∈ [150, 156] (∀i ∈ N ). The data transmission rate
(bytes/sec) from each user i to their covering edge server, wi,
is uniformly sampled from Rui ∈ [150, 175] (∀i ∈ N ). Then,
the CPU frequency of user i’s device is uniformly sampled
from fui ∈ [5, 8] (∀i ∈ N ). Data transmission rate (bytes/sec)
for D2D communication between edge servers j and j′ is
uniformly sampled from Rejj′ ∈ [200, 206] (∀j, j′ 6= j ∈ M)
and each edge server has a CPU frequency uniformly sampled
from fej ∈ [500, 506] (∀j ∈M). Further, admission capacities
for edge servers (i.e., number of requests that can be served
in an instance of the problem) are randomly sampled from
vej ∈ [5, 7] (∀j ∈ M). Finally, data transmission rates
(btyes/sec) from the edge servers to the cloud server are
uniformly sampled from Rcj ∈ [4, 6] (∀j ∈ M), the CPU
frequency of the cloud server is uniformly sampled from
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Fig. 2. CDF of Objectives (OPT and OPT 2 are overlapping and are the
leftmost curves)

f c ∈ [10000, 10007] in each trial. The cloud’s admission
capacity is fixed at vc = 60.

We fix the seed and repeat each test 10 times to remove
the effect of randomness. The total number of user requests,
|N |, is set to 150 where each of requests is associated with
one user and they are randomly connected to the edge servers.
The number of edge servers, |M|, is set to 10. We fix the α
to 50, Lmax = 50, and Amin = 0.5, unless otherwise stated.
We set the λ, the size of vector C of generated compressed
data, for both our proposed algorithm and RSOC equal to 11.

VI. RESULTS

A. Impact of Amin & Lmax on the Objective Value

We change the Amin from 40% to 70% and & Lmax

from 20 to 50 ms to evaluate the effect of QoS metrics–
average latency and average accuracy– on the objective value.
We set the α equal to 50. Fig. 2 represents the Cumulative
Distribution Function (CDF) of the objective value of the
proposed problem obtained by each algorithm when Amin
and Lmax are changed. The OPT and OPT 2 converge to the
same results. Therefore, they show same values on the plot. As
shown in Fig. 2, the proposed algorithm provides near optimal
results in terms of objective value even when Amin and Lmax
are changed. While the performance of baseline algorithms
decreases when Amin and Lmax are changed.

B. Impact of α on Compression Decision (s) and the Objective
Value

We fix the Lmax to 50 and Amin to 0.5 and change the
α in the range of 0.1 to 500 to evaluate the effect of α on
compression decision and the objective value. The objective
value of all algorithms based on different α values are provided
in Table. I. The results imply that PCODE achieves near
optimal solutions. Given the results presented in Table. I,
our proposed PCODE algorithm can empirically achieve in
average 0.958-approximation of the optimal solution provided
by OPT and OPT 2.
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Fig. 3. Impact of α on the proportion of served requests by each layer
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Fig. 4. Impact of α on the compression decision

The effect of α on the compression decision of requests
is shown in Fig. 4 where the y-axis represents the average
compression ratio of all requests and the x-axis represents
different α values. When α increases, the accuracy dominates
the latency and the compression ratio, si, is increased which
is intuitive given that larger data size provides better accuracy.
Fig. 3 represents the portion of requests served by each layer–
cloud, edge, and users. As shown, the optimal solutions and
the proposed algorithm provide a trade-off between the amount
of resources used by each layer in the network while most of
baseline algorithms do not. Although the RSOC and RSRC
provide a trade-off between a portion of consumed resources in
the networks, their objective value is worse than our proposed
algorithm, PCODE, based on Table. I. Additionally, the solver
cannot find a solution for OPT and OPT 2 when α < 10
because we limited the number of back-to-back running of
P1.1 and P1.2. While our proposed algorithm can find a
solution for these cases in less than a second.
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Fig. 5. Impact of edge servers and cloud server CPU on objective value

TABLE I
THE AVERAGE OBJECTIVE VALUE OF ALL ALGORITHMS BASED ON

DIFFERENT α VALUES (NOTE THAT “-” MEANS THAT ALGORITHM DID NOT
FIND VALID SOLUTION FOR THAT CASE.)

α Values

Algorithm 1.0 10 50 100 200

OPT - 3.231 -24.779 -61.231 -135.037
OPT 2 - 3.231 -24.779 -61.231 -135.037

PCODE 10.631 4.921 -23.260 -59.705 -133.419
RSOC 11.959 6.411 -20.301 -54.546 -124.137
RSRC 14.263 9.170 -14.752 -44.173 -102.950

NC - 14.056 -15.547 -52.739 -127.165
FC 13.408 6.483 -9.820 -36.756 -91.287
W 29.063 24.167 1.750 -23.202 -79.416

C. Impact of Hardware Resources

We changed the CPU capacity of both the cloud layer
and the edge layer. We fixed the edge CPU capacity across
all edge servers. Fig. 5 represents the effect of cloud server



CPU and edge servers CPU on the objective value of all
algorithms. When either the cloud server CPU or the edge
servers CPU increases, the objective improves. Fig. 5 implies
that the objective value of our proposed PCODE algorithm
is close to OPT and OPT 2 in all cases of different CPU
capacities for both edge servers and the cloud server.

VII. CONCLUSIONS

This paper studies joint offloading and compression deci-
sions in a 3-tier user-edge-cloud system considering limited
communication and computation capacity of the devices. We
proposed a Mixed Integer Nonlinear Program (MINLP) to
solve the proposed problem. We decompose the proposed
MINLP into two sub-problems: one that solves the offloading
sub-problem and another that solves the the compression sub-
problem with one set of continues decision variables. The
MINLP is NP-hard. Therefore, we propose a heuristic algo-
rithm, namely PCODE, to solve the problem. We compare our
proposed PCODE algorithm against several baselines in terms
of objective value and the final decisions of each algorithm
regarding both the compression and offloading problems using
extensive simulation. Our results show that PCODE can match
the solution found by the optimization solver by an 0.958-
approximation on average. In future works, we will focus on
a real-world implementation of this work.
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