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Abstract—Traffic congestion is a costly phenomenon of every-
day life. Reinforcement Learning (RL) is a promising solution due
to its applicability to solving complex decision-making problems
in highly dynamic environments. To train smart traffic lights
using RL, large amounts of data is required. Recent RL-based
approaches consider training to occur on some nearby server or
a remote cloud server. However, this requires that traffic lights
all communicate their raw data to some central location. For
large road systems, communication cost can be impractical, par-
ticularly if traffic lights collect heavy data (e.g., video, LIDAR).
As such, this work pushes training to the traffic lights directly
to reduce communication cost. However, completely independent
learning can reduce the performance of trained models. As such,
this work considers the recent advent of Federated Reinforcement
Learning (FedRL) for edge-enabled traffic lights so they can
learn from each other’s experience by periodically aggregating
locally-learned policy network parameters rather than share
raw data, hence keeping communication costs low. To do this,
we propose the SEAL framework which uses an intersection-
agnostic representation to support FedRL across traffic lights
controlling heterogeneous intersection types. We then evaluate
our FedRL approach against Centralized and Decentralized RL
strategies. We compare the reward-communication trade-offs of
these strategies. Our results show that FedRL is able to reduce
the communication costs associated with Centralized training
by 36.24%; while only seeing a 2.11% decrease in average
reward (i.e., decreased traffic congestion).

Index Terms—Smart Traffic, Traffic Light Control, Reinforce-
ment Learning, Edge Computing, Federated Learning

I. INTRODUCTION

According to recent transportation analytics data by INRIX,
traffic congestion cost the United States economy $88 billion
in 2019 alone [1]. Traffic congestion poses a constant threat to
the economy and safety within an urban environment, which
can be alleviated by using the compute and communication
resources available in smart cities. Urban traffic networks
exemplify a typical CPS where data, communication, and
connected infrastructure can now jointly optimize traffic oper-
ations within a road network. Communication capabilities of
the vehicles, traffic lights, and other road-side units (RSUs)
powered by vehicle-to-everything (V2X) and vehicular ad-hoc
networks (VANETS) provide opportunities for novel strategies
to mitigate traffic congestion over large and complex urban
road networks [2], [3]. Such strategies may require reliable
computing resources for the strict needs of urban traffic

networks. The recent advent of Edge Computing (EC) [4]
pushes compute resources to the network edge via compute
node servers, known as “edge servers”, that are close to the
smart city infrastructure. EC can be used to support more
compute-intensive tasks for vehicular networks.

Many recent works trying to support smart decision making
for traffic lights (commonly referred to as adaptive traffic
signal control) consider Reinforcement Learning (RL)-based
approaches [5], [6], [7], [8], [9], [10], [11]. RL is a popular
technique for training sequential decision-making policies for
problems that are highly dynamic and complex. Smart traffic
light strategies that incorporate RL typically employ either a
centralized [12], [13], [14] or decentralized [15], [10], [16]
technique for training policies. In the centralized case, a
policy is trained (typically on a roadside server) from the
observations collected by detectors and other infrastructural
components throughout the system. This central, roadside
server then communicates actions to each of the traffic lights.
Because the policy is learning over observations throughout
the road network, these approaches perform well in terms of
maximizing total reward. However, in practice, the amount
of communication needed to send all observational data to
the server can be costly. Decentralized approaches push the
policy training to the traffic lights based on observations local
to that traffic light, meaning less communication is needed
since training is local to the traffic light itself. However, in
decentralized approaches, the performance of the trained poli-
cies can be compromised because policies are learning in an
isolated and independent manner. Therein lies a natural trade-
off between policy performance w.r.t. maximizing reward and
the communication cost associated with training. To the best
of our knowledge, this trade-off has not been formally studied
for smart traffic light control with RL.

To this end, we study the reward-communication trade-off
for training smart traffic light control policies in an edge-
enabled traffic system. We do this by proposing a Federated
Reinforcement Learning (FedRL) technique inspired by the
recent Federated Learning (FL) paradigm [17], [18]. Under
our FedRL technique, we train traffic lights in a decentralized
manner to reduce overall communication costs. Periodically,
traffic lights will communicate their current policy network to
a roadside edge server (hereafter referred to as “edge-RSU”)



g Edge-Enabled Traffic light

@ Smart traffic Al model

<= - »  Communication channel 4

Edge RSU

Traffic light (a) ‘

Traffic light (b)
controls 2 lanes.

Fig. 1. Example of our traffic system where traffic lights communicate with
an edge-enabled roadside unit (Edge-RSU).

which will then aggregate the policy network parameters
using a weighted averaging method based on total reward.
This newly-averaged policy network is then distributed to
traffic lights for further training until the next aggregation
phase. This aggregation will allow traffic lights to learn from
each other without sharing raw observational data. For our
FedRL to work, representation of current traffic conditions
must be consistent across the road network, even in the
face of heterogeneous intersection types. In this way, the
representation needs to be transferable across road networks
and intersections. For this, we design a novel, intersection-
agnostic Markov Decision Process (MDP) [19] which we refer
to as Smart Edge-enabled trAffic Lights (SEAL). The central
contributions of this work can be summarized as follows:

o Design a novel, intersection-agnostic MDP for represent-
ing traffic conditions at traffic lights which we call SEAL.
SEAL is designed to have a general representation of
traffic conditions at intersections.

o Proposal of a Federated Reinforcement Learning (FedRL)
approach for training RL decision-making policies for
smart traffic light control.

o Improve reward-communication cost trade-off associated
with solving SEAL using our proposed FedRL approach
by reducing communication costs up to 36.24% on av-
erage while losing 2.11% on average when compared to
Centralized training.

II. SYSTEM DESCRIPTION

We now describe the system requirements for traffic infras-
tructure, data, and communication capabilities for our model.
Fig. 1 shows a typical traffic environment where our model
could be deployed. Our system considers a road network with
one or more intersections (depending on the road topology),
each equipped with a traffic light k£ € IC where K denotes the
set of traffic lights in the entire system. Each traffic light k € K
controls the traffic flow entering the intersection through an
incoming lane. A set of such controlled lanes is denoted
by L. A traffic controller, either located at each intersection
or at a server calculates a “phase state” ¢} for the traffic
lights at a given traffic light k£ at time-step ¢. The assigned
phase state is such that a traffic light will be assigned a
green, yellow or red “signal state”, represented by G, vy, r,

respectively. Therefore, a phase state is a string representing
the signal states of the traffic lights at all controlled lanes at an
intersection. For example, the phase state for an intersection
with eight controlled lanes would be GyrrGyrr. For a visual
example of phase states, refer to Fig. 2. Note that the phase
states are assigned such that the vehicles with conflicting
traffic flows are not allowed to access the intersection at once.
The length of the phase state is based on the number of
incoming controlled lanes at a given intersection. Our model
also expects that the vehicles obey the traffic regulations and
do not violate the assigned phase permissions indicated by the
traffic lights. Finally, in our system, we enforce the following
timing restrictions for phase state changes for each traffic
light k£ € K: (i) 4 seconds must pass since a previous phase
state change before a traffic light can change its phase state;
and (ii) a phase state change must occur within 120 seconds
of the most recent phase state change. These timings are
in accordance with the U.S. federal highway administration
guidelines based on average traffic behavior [20] and can be
changed as per traffic regulatory requirements. This is enforced
for all training and evaluation.

Traffic infrastructure is equipped either with road-side sen-
sors installed within every controlled lane to measure traffic
parameters such as lane occupancy, average traffic flow speed,
etc. (detailed in §III) or have connected vehicles to report
such data to the traffic lights by utilizing the connected
infrastructure. Traffic lights are equipped with edge compute
resources to process the data and perform local learning. The
edge resources also enable the connectivity among all traffic
lights within the traffic network as well as the centralized cloud
server to enable global optimization of the learning models.
For simplicity, we assume the presence of a single deployed
edge-RSU server in the region that maintains communication
channels to all the traffic lights in a given region to support ad-
ditional processes. Additionally, traffic lights are also equipped
with compute resources as well as the edge-RSU server. As
a simplifying assumption, we assume compute resources at
both the traffic lights and the edge-RSU server are sufficient to
train policies for smart traffic decisions. Succinctly, this work
aims to improve the implicit reward-communication trade-off
associated with distributed learning solutions to support smart
traffic systems using FedRL.

III. PROPOSED SEAL MODEL DEFINITION

Here, we define the Smart Edge-enabled trAffic
Lights (SEAL) system. SEAL is modeled as a Markov
Decision Process (MDP) [19] with the goal to minimize
traffic congestion in road networks. SEAL’s novelty is in
defining a general state space representation that can describe
current traffic conditions at a traffic light in an intersection-
agnostic way. This is necessary to support policy aggregation
in our FedRL approach (discussed later in §IV-C).

The work most similar to ours is that of Zhou et al.’s DRLE
framework in [15]. This work is able to consider a distributed
multi-agent RL approach to smart traffic light control with
convergence guarantees. However, this does not consider the



GGrGGr
012345

rrGrrG
012345

Yyryyr
012345

Fig. 2. Example traffic light action transition graph. Consider the given traffic
light £’s current phase state is GGrGGR. If the action az =1 at time-step ¢,
then the phase state for k£ will transition to yyryyr if sufficient time has
elapsed since its last transition. Otherwise, its phase state remains the same,
unless too much time has elapsed since its last change.

possibility of traffic lights themselves training their own policy
networks. Instead, the DRLE framework sets traffic lights
to communicate their local state observations to a roadside
server to perform state aggregation to form a “global” state.
This global statefulness allows for convergence guarantees, but
may not be attractive for future solutions where traffic lights
may collect large volumes of data (e.g., hyper-spectral images,
videos, LIDAR imaging, etc.) to make decisions. Having large
amounts of traffic lights stream these data in real-time to
make timely decisions may not scale well. Thus, we consider
SEAL. Future works investigate possible convergence bounds
of SEAL is of interest but is beyond the scope of this work.

A. Action Space

In prior works investigating the use of RL for traffic light
control, various kinds of actions have been considered. These
include phase switch [15], [16], phase duration [9], and the
phase state itself [7]. The phase state considers a discrete
space of size n where n is the number of possible states for
a traffic light. Since phase state depends on the number of
controlled lanes and hence the traffic lights at an intersection,
it is infeasible to aggregate knowledge among the intersections
with varying topologies. For this work, we consider a simpler
phase switch approach in which we consider each traffic
light k£ € K in time-step ¢ to take an action a}, € {0, 1} where
al =1 signifies that traffic light £ will attempt to change to
the next phase state. Otherwise, al, = 0 signifies no phase
state change will be attempted by traffic light &k at time-step ¢.

Note, if a traffic light k£ attempts to change in some time-
step ¢ (i.e., al, = 1), a change can only occur if enough time
has elapsed since its last change; further, a traffic light k& will
be forced to change its phase state regardless of its action if
too much time has elapsed since its last change. This is due
to the phase state timer (discussed in §II) to ensure policies
mean mandatory regulations related to road safety [20]. Refer
to Fig. 2 for an illustrated example of phase state logic and
transitions made when aj, = 1.

B. State Space

State space features consist of the following for a traffic
light & in time-step ¢: lane occupancy (0},), halted lane occu-
pancy (h},), average speed ({},), and phase state ratios (p4,(-))
for all possible phase states (e.g., green, yellow, red).

1) Lane Occupancy: The average ratio of occupancy across
all lanes controlled by a traffic light £ in time-step ¢. Each
traffic light k£ controls some set of lanes. Thus, we consider
the occupancy of a lane ! to be how much of a lane’s length
(in meters) is occupied by vehicles (as a ratio). However, we
average this across all lanes controlled by traffic light k. The
formal definition for lane occupancy is provided below:

s Zzg,/;k Zvevlt len(v)
Zleﬁk len(l)

where L} is the set of lanes controlled by traffic light &, V} is
the set of vehicles occupying lane [ in time-step ¢, and len(-)
is the length of the vehicle or lane (in meters).

2) Halted Lane Occupancy: SEAL’s goal is to minimize
congestion in road systems. Thus, we consider how much of
a lane is occupied with halted vehicles. As such, we consider
h! to be the halted lane occupancy of traffic light % in time-
step t when we consider a vehicle to be halted if its current
speed is < 0.1 meters/second. Thus, we define h‘}€ below:

A Zle[,k. ZUE’H; len(v)
Zleﬁk len(l)

where H| is the set of halted vehicles occupying lane [ in
time-step t.

3) Average Speed: We also consider the average speed (1))
among vehicles occupying lanes controlled by a traffic light &
at time-step ¢ as a feature. Similar to the other features, this
one is also normalized as a ratio in the range [0, 1]. The formal
definition is below:
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where spdf) is the moving speed of vehicle v in time-step ¢
and spd]"™™ is the speed limit (or maximum speed allowed)
on lane [. The second case in Eq. (3) is for cases when there
are no vehicles occupying lanes controlled by traffic light k.
4) Phase State Ratio: The current phase state of a traffic
light has been used as feature in prior works (namely, [15]).
This is possible because simple road networks are considered
with homogeneous intersections where traffic lights have the
same sets of possible phase states. To handle heterogeneous
phase state sets across different intersection types, we instead
represent the ratio of how each possible traffic light signal
(e.g., green, yellow, red) makes up the entire phase state. Thus,
we denote the ratio of a traffic light signal for a traffic light k in
time-step ¢ by ©F(-) € [0, 1]. For instance, given a phase state
at traffic light k in time-step t GGrGGr, we denote how much



of the phase state are red lights, r, by ¢}.(r) = 2/6 (similarly
for prioritized green lights, G, ¢} (G) = 4/6). Because we
represent the ratio rather than assign an arbitrary discrete value
to represent the entire phase state, the representation is general
and can be used across different road networks with various
intersections. It should be noted that >- . ¢}.(p) = 1 (Vk,1)
where Py is the set of phase states for traffic light k.

C. Reward Function

The goal of SEAL is to reduce congestion in a given road
network. With that in mind, we let reward ri for a traffic
light & at time-step ¢ be a function of both lane occupancy (o},)
and halted lane occupancy (h}). We define it below:

ri = =0k + hi)*. @)

These state space features are summed to penalize traffic lights
with more congestion. We let halted vehicles to incur more
penalty since they contribute to both lane occupancy and halted
lane occupancy. From there, we define the total reward, rt,
over the road whole network at time-step ¢ as

rt & Zrz (5)

ke
D. Communication Model

As discussed in §1I, we require robust communication capa-
bilities between vehicles, traffic lights and edge-enabled RSUs
to support smart traffic control. Depending on the training
approach (detailed in §1V), a traffic control system must ac-
count for different communication channel utilization and their
incurred costs. We therefore consider the following 6 different
types of possible communications that can take place under
the SEAL system: (i) policy network parameters from edge-
RSU to traffic light, (ii) policy network parameters from traffic
light to edge-RSU, (iii) action from edge-RSU to traffic light,
(iv) observations from traffic light to edge-RSU, (v) vehicle-
to-infrastructure (V2I) communication from vehicle to traffic
light, and (vi) congestion ranks from edge-RSU to traffic
light. We will evaluate the associated communication costs
while training of our proposed model in §VI. To reiterate,
we assume that edge-enabled traffic lights and the edge-RSU
have sufficient compute capacity to performing policy training.
Thus, we do not consider compute constraints and focus on
communication cost instead.

IV. TRAINING ALGORITHMS

The goal of SEAL is to learn optimal traffic light control
policies to minimize congestion for a given road network. To
solve the SEAL model, we adopt model-free reinforcement
learning techniques. More specifically, we will incorporate the
recent Proximal Policy Optimization (PPO) [21] algorithm.
Solutions to SEAL will aim to find a smart traffic light control
policy, m, such that

Q" (s,a)=(1—7)-E i(v)t_l rilst =s,al =a| (6)
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Fig. 3. Training approaches considered for solving SEAL.
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is maximized where the policy is a decision-making function
m: S — A and v is the discount factor. Eq. (6) is known
as the )-function. The optimal policy that maximizes the Q-
function is defined as 7* = arg max, Q™ (s, w(s)) Vs. For the
sake of convenience, we denote Q(s,a) = Q™ (s, a), Y(s,a)
where s and a are a state and action, respectively. In RL, the
Q-function is commonly approximated with a neural network
using parameters w. RL algorithms can be implemented in
real-world systems in various ways. As such, we consider 3
different approaches for facilitating the PPO algorithm to solve
SEAL: (i) centralized training, (ii) decentralized training, and
(iii) federated training. A visual example of how these ap-
proaches compare can be found in Fig. 3. For a comprehensive
overview on the theory of RL, please refer to [22].

A. Centralized Training

Under centralized training, there is a single policy network
that is hosted on the nearby edge-RSU. At each time-step ¢,
each traffic light & € K submits their current state s to
the edge-RSU which then returns an action al to traffic
light k. Since a single policy network is learning across all
observations in the system, it is expected to learn the optimal
policy faster than other approaches. However, this is at the
expense of incurring a large amount of overhead in terms of
communication cost because of the traffic light having nonstop
communication with the edge-RSU to take an action. For this
work, we view this approach as an upper bound in terms of
most quickly learning the optimal policy, 7*.

1) Centralized Training Communication Costs: Decision-
making in a centralized manner requires traffic lights to always
communicate to the edge-RSU leading to higher communica-
tions. Under Centralized training, the following communica-
tions take place at each time-step: actions from the edge-RSU
to traffic lights, observations from traffic lights to edge-RSUs,
and V2I communications from vehicles to traffic lights.

B. Decentralized Training

Unlike centralized training, decentralized training equips
each traffic light £ € IC with a policy network that aims to
independently learn an optimal local policy for traffic light k,
7, for optimizing reward using only observations local to
that traffic light. In essence, if all traffic lights in the system
are able to learn an optimal policy, then that can benefit
the entire road network. Zhou et al. in [15] proved that a
decentralized training approach using per-traffic light policies
for smart traffic light control, can converge to a centralized



approach if given infinite time. In general, this approach can
attain good performance if given enough time. While the
decentralized approach is bested by the centralized approach
in finding an optimal policy, since the latter is learning from
global observations, the former approach is of interest as it
requires less communication.

1) Decentralized Training Communication Costs: In the
decentralized case, since the traffic lights never communicate
to the edge-RSU for making decisions, little communication
occurs. The only communication that takes place is V21
communication from vehicles to traffic lights.

C. Federated Training

With the expectation that decentralized training will not
perform as well as centralized training due to policies learning
over fewer observations, but will require less communication,
we wish to achieve the best of both worlds. A novel contribu-
tion of this work is that we leverage the findings of the recent
federated learning (FL) paradigm [17], [18] for distributed
systems. Here we apply it to decentralized training to allow
the traffic lights to learn from each other without needing
to communicate raw data. We refer to this notion aptly as
Federated Reinforcement Learning (FedRL) [23], [24]. FL has
shown to reduce communication cost in the literature [25]
while providing an immediate layer of privacy because no
raw data are communicated. These are crucial advantages for
smart traffic light control for future systems. For instance,
consider a system that considers live video feed as a feature in
the state space representation. Because identifying information
(e.g., license plate numbers and faces of pedestrians) may be
included, privacy is crucial. Additionally, such data may be
very large and incur hefty data transmission costs. As such,
we will focus on the benefit of federated training for smart
traffic light control w.r.t. the trade-off between communication
cost on the system and maximizing reward.

In FedRL, the traffic light agents training their own policy
networks will periodically communicate the learned policy
network parameters to the edge-RSU. The edge-RSU will
then aggregate them using an averaging function. The newly
aggregated policy network parameters are then communicated
back to the traffic lights for further learning. Aggregation will
occur after a number of time-steps occurs. We refer to this
time period as a frame and denote it by F. We denote the
policy network parameters learned by traffic light k£ at the end
of frame F by wf .

In [18], the federated averaging (FedAvg) technique was
proposed. This technique addresses the challenge of non-
independent and identically distributed (iid) data distributions
across different client devices. FedAvg uses a weighted aver-
age of the client’s locally-updated model parameters based on
the number of data items owned by that client. This weight
combats non-iid data distributions common in distributed
systems. For the sake of this work, we consider a simplifying
assumption that traffic lights have identical data sampling rates
— resulting in the same amount of observations. Below is the
definition of the averaging we consider,
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Fig. 4. Considered Grid-3 x 3 road network with heterogeneous intersection
types. Note that the number of lanes increase as roads are more central.
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where the newly-aggregated, global parameters w’*! is the
average of the parameters collected from all the traffic lights.
These parameters are then sent back to the traffic lights at the
start of frame F' 4 1 to resume training. Asynchronous ag-
gregation techniques to address heterogeneous data sampling
rates among traffic lights is beyond the scope of this work.

1) Federated Training Communication Costs: With fed-
erated training, communications that occur at each time-
step are mostly identical to that for decentralized training
(discussed in §IV-B1). The only difference is at the end of
each frame (which occur less frequently than each time-step),
2 additional communications occur: policy network parameters
from edge-RSU to traffic lights and policy network parameters
from traffic lights to edge-RSU.

V. EXPERIMENT DESIGN

We implement the SEAL framework using the Python
programming language. Further, we implement the training
approaches described in §IV using the SUMO traffic simula-
tor [26] for the traffic simulation and Ray’s RLIib [27] toolbox
for the RL pipeline. Our software serves as the interface for
these tools to fit our work’s very specific needs. Thus, we
only train the policy networks using PPO using simulations
with these tools.

A. Considered Road Network Topologies

For training the policies using Ray’s RLIib [27] and per-
forming evaluation via simulation, we consider 3 road network
topologies provided in Fig. 4: (a) Grid-3 x 3, (b) Grid-
5 x 5, and (c¢) Grid-7 x 7. Roads on the border of the
network have 1 lane going each direction, with the number
of lanes going north/south and east/west increasing by 1
when approaching the center north/south and east/west roads.
This is to introduce heterogeneous road network topologies.
For an example, refer to Fig. 4. For simplicity, we do not
allow vehicles to make turns to prevent the vehicles from
getting stuck in the simulation. Note that this is a limitation
of SUMO and SEAL’s design is general enough to support



Federated === Centralized - Decentralized

] Grid-3X3 Grid-5X5 Grid-7x7
S _6F T T T = .
z _14fb JoomTmnnlA]
2 .
Q
§ -1op =30 5
=
3] -8
=
S -10f1 : N i i g 357 i N
= 0k 100k 200k 0Ok 100k 200k 0k 100k 200k
Time-Steps Time-Steps Time-Steps
(a) (b) (©

Fig. 5. Learning curves with each training approach on each road network.

turning vehicles. Each training approach (discussed in §IV)
will learn policies over each road network topology. Vehicles
routes for training and evaluation are randomly generated
using the randomTrips.py module provided by SUMO
with 360 vehicles per lane per hour (VPLPH) generated.

B. Training Parameters

We use Proximal Policy Optimization (PPO) [21] to
train policies to solve SEAL. We use the following hyper-
parameters. The learning rate is 5 x 1072, SGD minibatch size
is 128. PPO CLIP parameter is set to 0.3. Target value for KL
divergence is 0.3. Train batch size is 4000 time-steps. (Note
policy network parameter aggregation, described in §IV-C,
occurs every 4000 steps.) Roll-out fragment length (size of
batches collected from each worker) is 200. We use General-
ized Advantage Estimator (GAE) and the GAE parameter is
set to 1.0. The VF clip parameter is set to 10.

VI. RESULTS & DISCUSSION
A. Reward Evaluation During Training

First, we compare the different training strategies discussed
in §IV in terms of the reward achieved by the policy networks
during training. In Fig. 5, we can see the learning curves
of each training strategy when used on each of the 3 road
network topologies described in §V-A. From these results,
we find that, in general, make the following observations:
(i) Centralized training generally achieves the greatest re-
ward, (ii) Decentralized training generally achieves the worst
reward and, (iii) Federated training achieves greater reward
than Decentralized training (and often nearly match that of
Centralized training). These observations are fairly intuitive.
Since Centralized training trains a single policy network over
all observations collected in the environment, it has more
to learn from. Conversely, with Decentralized training, each
traffic light learns independently using its own observations
— meaning each traffic light’s policy learns over fewer ob-
servations. Since Federated training expands on Decentralized
training by allowing parameter aggregation among the policy
networks learned by the traffic lights, the traffic lights are
essentially able to learn from each other without explicitly
sharing observations and other raw data. More specifically, we
find that Decentralized training suffers from an 8.01% drop
in reward compared to the Centralized training. Meanwhile,
Federated training only suffers from an 2.11% drop in reward
compared to Centralized training.
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Fig. 6. Communication cost (i.e., data size in bytes) transmitted during

training time under each training strategy for each road network.

B. Communication Cost Evaluation During Training

Given Federated training is able to more closely approxi-
mate the reward achieved by Centralized training when com-
pared to Decentralized training, we next compare the com-
munication costs associated with each training strategy. We
do this by tracking the number of communication that occurs
(refer to §III-D) and the number of times each communication
type occurs by the amount of bytes needed to transmit the data
for that communication. In Fig. 6, we compare the size of the
data needed to be communicated through the system during
training using each of the training strategies under each of the
road network topologies. There is a glaring difference in terms
of communication efficiency between Centralized and De-
centralized/Federated. Because Centralized training requires
constant communication between the edge-RSU and the traffic
lights in order to transmit observations, actions, and other data,
it naturally incurs much greater communication cost. Mean-
while, Decentralized and Federated training greatly reduce this
cost due to them keeping communication mostly between the
vehicles and the traffic light. The only communication between
the Edge-RSU and the traffic lights under Federated training
is when policy network parameters are aggregated after each
frame concludes. It is interesting to note that Federated is able
to best Decentralized training in terms of communication cost
in these results. This is due to the Federated training strategy
producing better policy networks and removing vehicles from
the system more efficiently than the Decentralized model
— resulting in less vehicle-to-infrastructure communication.
More numerically speaking, from our results Decentralized
and Federated training are able to achieve a communication
cost reduction of 34.65% and 36.24%, respectively, when
compared to Centralized training.

C. Trained Policy Network Performance

Here, we are interested in two questions: (1) Can RL-based
traffic lights trained with SEAL improve traffic conditions?
(2) Can policy networks trained with SEAL perform well when
used on road networks they were not trained on? To answer
the first question, we compare our trained policy networks
against a standard traffic light control baseline: a pre-timed
control [20] where traffic lights cycle through phase states at
fixed time intervals. We support this comparison using real-
world traffic metrics to evaluate the experience of drivers in the
system. Namely, we consider both “Travel Time” and “Waiting
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Fig. 7. Evaluation of trained policy networks on each road network using trip metrics, namely Travel Time (top row) and Waiting Time (bottom row). We
compare the results to a Pre-Timed phase transition model as a baseline. Results confirm the RL-based solutions generally outperform the baseline.

Time”. The former is the total amount of (simulation) time
taken for vehicles to reach their destination; the latter is the
amount of (simulation) time vehicles are waiting to move at a
traffic light. The results of this evaluation are shown in Fig. 7.
We see that in nearly all cases, the RL-based training strategies
outperform that of the Timed-Phase baseline. The only outlier
is the Centralized trainer when learning in the Grid-3 x 3
road network. As for the second question regarding possible
transferability of the policy networks, we observe in Fig. 7 that
the policy networks are generally able to perform comparable
to one another (ignoring the Centralized trainer when trained
on Grid-3 x 3). This generally holds true for policy networks
being tested on the same road network they were trained on
when compared to policy networks trained on other networks.
These results serve to motivate the use of RL-based approaches
for future smart traffic applications. We find that (on average)
Centralized, Decentralized, and Federated reduce travel time
compared to Pre-Timed by 11.63%, 18.16%, and 18.14%,
respectively. Also, we find that (on average) Centralized,
Decentralized, and Federated reduce waiting time compared
to Pre-Timed by 42.81%, 58.92%, and 58.93%, respectively.
The underperformance of Centralized here, compared to De-
centralized and Federated, is likely due to the outlier scenarios
when its trains on Grid-3 x 3. We attribute these anamolies to
potential overfitting, though further experiments are needed.

VII. RELATED WORKS

Improving traffic light signal control in road networks has
been a widely studied subject. Much work is being done
to improve traffic conditions by developing adaptive traffic
signal control (ATSC) where traffic lights adapt intelligently
based on current traffic demands [28]. Many different tech-
niques have been considered for realizing ATSC. Early works

considered linear optimization frameworks [29].While linear
programming is straightforward, it is not an appropriate match
for ATSC because of the highly dynamic nature of real-
world traffic systems — making accurate objective functions
and constraints difficult to define. Genetic (or evolutionary)
algorithms have also been considered in prior works [30]. In
the early 2000s, initial works focusing on the application of
Reinforcement Learning (RL) techniques for ATSC were pub-
lished [6], [12]. While seminal, these initial works considered
very simple road network scenarios. With advancements in
both vehicular communication [2], [3] and RL algorithms [22],
interest in RL for ATSC (or smart traffic) has been renewed.
However, recent RL algorithms use more complex policy
networks that require more compute resources to train.
Works considering RL for smart traffic light signal control
have greatly increased over the years [7], [9], [10]. Because of
the large number of entities in a traffic system (e.g., multiple
traffic lights, multiple vehicles), multi-agent RL techniques
have been applied to smart traffic light control [16], [11]. El-
Tantawy et al. in [16] propose a multi-agent RL framework
where agents can either be independent or collaborative in
how they make decisions with other traffic light agents. Chu et
al. in [8] propose a decentralized, multi-agent RL framework
to provide robust learning with using a scalable framework.
Chen et al. in [5] propose a decentralized actor-critic model
and a difference reward method to accelerate the convergence
of the trained policies for smart traffic light control. Mousavi
et al. in [13] study both, policy- and value-based deep RL
approaches for smart traffic light control. However, they only
consider a single intersection, where the state space is a
screenshot of the intersection provided by a traffic simulator.
These works focus on improving training first and foremost,
the communication cost for training these policies is ignored.



Edge Computing (EC) [4] is a recent enabling technology
that pushes compute resources to the network edge. This
has become an increasingly popular context for deploying Al
(e.g., machine learning, deep learning, and RL) services to the
network edge to provide low-latency intelligence. A significant
recent work by Zhou et al. in [15] studied the applicability of
edge computing for decentralized RL for smart traffic lights. A
central contribution of this work is the theoretical guarantees
that show that their proposed decentralized framework can
provide a near-optimal guarantee on reduced traffic if given
enough time. Different from this work, we design a framework
that allows heterogeneous traffic lights to train policy networks
in a federated manner to reduce communication costs.

The central gap in the literature related to RL for smart
traffic light control is that the trade-off between reward and
communication cost has been neglected. Additionally, recent
advancements in the realm of Federated Learning (FL) or,
more specifically, Federated Reinforcement Learning (FedRL)
has yet to be applied to the smart traffic control problem.

VIII. CONCLUSIONS

In closing, this work to the best of our knowledge, is
the first to approach smart traffic light control using Feder-
ated Reinforcement Learning (FedRL) in an edge computing-
enabled system. We do this by proposing SEAL, which is
an intersection-agnostic Markov Decision Problem for smart
traffic light control to support aggregating learned policy
network parameters across heterogeneous intersection types.
This allows traffic lights to learn from each other’s experiences
without sharing raw experience data which reduces communi-
cation workloads (while providing some level of privacy). Our
experiments demonstrate that SEAL combined with FedRL
approach is able to closely match the rewards provided by a
Centralized training approach (only a 2.11% decrease) when
compared to the Decentralized approach that shows a 8.01%
drop in reward. Further, our FedRL approach reduces the
communication cost by 36.24% when compared to Central-
ized training. Hence, FedRL improves the implicit reward-
communication trade-off for distributedly training smart traffic
systems. In the future, we aim to extend our work to further
analyze the theoretical bounds of SEAL and to study its
effectiveness in small robotic testbed systems.
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