Publications

Publications by categories in reversed chronological order. For a more complete record of publications, please refer to Google Scholar .

2025

  1. Supercomputing
    Addressing Reproducibility Challenges in HPC with Continuous Integration
    Valérie Hayot-Sasson, Nathaniel Hudson, André Bauer, Maxime Gonthier, Ian Foster, and Kyle Chard
    In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2025
  2. PNAS
    Cartesian equivariant representations for learning and understanding molecular orbitals
    Daniel S. King, Daniel Grzenda, Ray Zhu, Nathaniel Hudson, Ian Foster, Bingqing Cheng, and Laura Gagliardi
    Proceedings of the National Academy of Sciences, 2025
  3. eScience
    Steering an Active Learning Workflow Towards Novel Materials Discovery via Queue Prioritization
    Marcus Schwarting, Logan Ward, Nathaniel Hudson, Xiaoli Yan, Ben Blaiszik, Eliu Huerta, and Ian Foster
    In 2025 IEEE International Conference on e-Science, 2025
  4. fgcs
    hfl-flight-system.png
    Flight: A FaaS-Based Framework for Complex and Hierarchical Federated Learning
    Nathaniel Hudson, Valerie Hayot-Sasson, Yadu Babuji, Matt Baughman, J Gregory Pauloski, Ryan Chard, Ian Foster, and Kyle Chard
    Future Generation Computer Systems, 2025
  5. Preprint
    AERO: An autonomous platform for continuous research
    Valérie Hayot-Sasson, Abby Stevens, Nicholson Collier, Sudershan Sridhar, Kyle Conroy, J. Gregory Pauloski, Yadu Babuji, Maxime Gonthier, Nathaniel Hudson, Dante D. Sanchez-Gallegos, Ian Foster, Jonathan Ozik, and Kyle Chard
    arXiv preprint arxiv:2505.18408, 2025
  6. Preprint
    Topology-Aware Knowledge Propagation in Decentralized Learning
    Mansi Sakarvadia, Nathaniel Hudson, Tian Li, Ian Foster, and Kyle Chard
    arXiv preprint arXiv:2505.11760, 2025
  7. Preprint
    MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow
    Xiaoli Yan, Nathaniel Hudson, Hyun Park, Daniel Grzenda, J. Gregory Pauloski, Marcus Schwarting, Haochen Pan, Hassan Harb, Samuel Foreman, Chris Knight, Tom Gibbs, Kyle Chard, Santanu Chaudhuri, Emad Tajkhorshid, Ian Foster, Mohamad Moosavi, Logan Ward, and E. A. Huerta
    2025
  8. ICLR ’25
    Mitigating Memorization In Language Models
    Mansi Sakarvadia, Aswathy Ajith, Arham Khan, Nathaniel Hudson, Caleb Geniesse, Kyle Chard, Yaoqing Yang, Ian Foster, and Michael W Mahoney
    In to appear in the proceedings of The Thirteenth International Conference on Learning Representations, 2025
  9. TMLR
    Causal Discovery over High-Dimensional Structured Hypothesis Spaces with Causal Graph Partitioning
    Ashka Shah, Adela DePavia, Nathaniel Hudson, Ian Foster, and Rick Stevens
    Transactions on Machine Learning Research (TMLR), 2025

2024

  1. Preprint
    SoK: On Finding Common Ground in Loss Landscapes Using Deep Model Merging Techniques
    Arham Khan, Todd Nief, Nathaniel Hudson, Mansi Sakarvadia, Daniel Grzenda, Aswathy Ajith, Jordan Pettyjohn, Kyle Chard, and Ian Foster
    arXiv preprint arXiv:2410.12927, 2024
  2. eScience
    TaPS: A Performance Evaluation Suite for Task-based Execution Frameworks
    J. Gregory Pauloski, Valerie Hayot-Sasson, Maxime Gonthier, Nathaniel Hudson, Haochen Pan, Sicheng Zhou, Ian Foster, and Kyle Chard
    In 2024 IEEE International Conference on e-Science, 2024
  3. eScience
    An Empirical Investigation of Container Building Strategies and Warm Times to Reduce Cold Starts in Scientific Computing Serverless Functions
    André Bauer, Maxime Gonthier, Haochen Pan, Ryan Chard, Daniel Grzenda, Martin Straesser, J. Gregory Pauloski, Alok Kamatar, Matt Baughman, Nathaniel Hudson, Ian Foster, and Kyle Chard
    In 2024 IEEE International Conference on e-Science, 2024
  4. JDIQ
    Thinking in Categories: A Survey on Assessing the Quality for Time Series Synthesis
    Michael Stenger, André Bauer, Thomas Prantl, Robert Leppich, Nathaniel Hudson, Kyle Chard, Ian Foster, and Samuel Kounev
    Journal of Data and Information Quality, May 2024
    Just Accepted
  5. Preprint
    Deep Learning for Molecular Orbitals
    Daniel King, Daniel Grzenda, Ray Zhu, Nathaniel Hudson, Ian Foster, and Laura Gagliardi
    May 2024
  6. Sensor Letters
    RuralAI in Tomato Farming: Integrated Sensor System, Distributed Computing and Hierarchical Federated Learning for Crop Health Monitoring
    Harish Devaraj, Shaleeza Sohail, Boyang Li, Nathaniel Hudson, Matt Baughman, Kyle Chard, Ryan Chard, Enrico Casella, Ian Foster, and Omer Rana
    IEEE Sensors Letters, May 2024
  7. FGCS
    QoS-aware edge AI placement and scheduling with multiple implementations in FaaS-based edge computing
    Nathaniel Hudson, Hana Khamfroush, Matt Baughman, Daniel E. Lucani, Kyle Chard, and Ian Foster
    Future Generation Computer Systems, May 2024
  8. BDCAT
    Trillion Parameter AI Serving Infrastructure for Scientific Discovery: A Survey and Vision
    Nathaniel Hudson, J. Gregory Pauloski, Matt Baughman, Alok Kamatar, Mansi Sakarvadia, Logan Ward, Ryan Chard, André Bauer, Maksim Levental, Wenyi Wang, Will Engler, Owen Price Skelly, Ben Blaiszik, Rick Stevens, Kyle Chard, and Ian Foster
    In Proceedings of the IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, May 2024
    (Accepted for publication)

2023

  1. SC Workshop
    Tournament-Based Pretraining to Accelerate Federated Learning
    Matt Baughman, Nathaniel Hudson, Ryan Chard, Andre Bauer, Ian Foster, and Kyle Chard
    In Proceedings of the SC ’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, , Denver, CO, USA, , May 2023
  2. IMM
    Measurement and Applications: Exploring the Challenges and Opportunities of Hierarchical Federated Learning in Sensor Applications
    Melanie Po-Leen Ooi, Shaleeza Sohail, Victoria Guiying Huang, Nathaniel Hudson, Matt Baughman, Omer Rana, Annika Hinze, Kyle Chard, Ryan Chard, Ian Foster, Theodoros Spyridopoulos, and Harshaan Nagra
    IEEE Instrumentation & Measurement Magazine, May 2023
  3. Preprint
    Attention Lens: A Tool for Mechanistically Interpreting the Attention Head Information Retrieval Mechanism
    Mansi Sakarvadia, Arham Khan, Aswathy Ajith, Daniel Grzenda, Nathaniel Hudson, André Bauer, Kyle Chard, and Ian Foster
    May 2023
  4. BlackBoxNLP
    Memory Injections: Correcting Multi-Hop Reasoning Failures during Inference in Transformer-Based Language Models
    Mansi Sakarvadia, Aswathy Ajith, Arham Khan, Daniel Grzenda, Nathaniel Hudson, André Bauer, Kyle Chard, and Ian Foster
    May 2023
  5. WF-IoT
    Adversarial Predictions of Data Distributions Across Federated Internet-of-Things Devices
    Samir Rajani, Dario Dematties, Nathaniel Hudson, Kyle Chard, Nicola Ferrier, Rajesh Sankaran, and Peter Beckman
    In 2023 IEEE World Forum on Internet of Things (WF-IoT), Oct 2023
  6. Supercomputing
    Accelerating Communications in Federated Applications with Transparent Object Proxies
    J. Gregory Pauloski, Valerie Hayot-Sasson, Logan Ward, Nathaniel Hudson, Charlie Sabino, Matt Baughman, Kyle Chard, and Ian Foster
    In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, Oct 2023
    (Accepted for publication)
  7. TECS
    Deadline-Aware Task Offloading for Vehicular Edge Computing Networks Using Traffic Lights Data
    Pratham Oza, Nathaniel Hudson, Thidapat Chantem, and Hana Khamfroush
    ACM Transactions on Embededded Computing Systems, Apr 2023
    Just Accepted
  8. ICPE
    Searching for the Ground Truth: Assessing the Similarity of Benchmarking Runs
    André Bauer, Martin Straesser, Mark Leznik, Marius Hadry, Lukas Beierlieb, Nathaniel Hudson, Kyle Chard, Samuel Kounev, and Ian Foster
    In 2023 ACM/SPEC International Conference on Performance Engineering Data Challenge Track, Apr 2023
  9. PerCom
    Balancing federated learning trade-offs for heterogeneous environments
    Matt Baughman, Nathaniel Hudson, Ian Foster, and Kyle Chard
    In 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom) Work in Progress, Apr 2023

2022

  1. Cloud Continuum
    Hierarchical and Decentralised Federated Learning
    Omer Rana, Theodoros Spyridopoulos, Nathaniel Hudson, Matt Baughman, Kyle Chard, Ian Foster, and Aftab Khan
    In 2022 Cloud Computing, Apr 2022
  2. eScience
    FLoX: Federated learning with FaaS at the edge
    Nikita Kotsehub, Matt Baughman, Ryan Chard, Nathaniel Hudson, Panos Patros, Omer Rana, Ian Foster, and Kyle Chard
    In 2022 IEEE International Conference on e-Science, Dec 2022
  3. SMARTCOMP
    SEAL-traffic-anim.gif
    Smart Edge-Enabled Traffic Light Control: Improving Reward-Communication Trade-offs with Federated Reinforcement Learning
    Nathaniel Hudson, Pratham Oza, Hana Khamfroush, and Chantem Thidapat
    In 2022 IEEE International Conference on Smart Computing (SMARTCOMP), Jul 2022
  4. Thesis
    Smart Decision-Making via Edge Intelligence for Smart Cities
    Nathaniel Hudson
    University of Kentucky, May 2022
  5. CCNC
    Communication-Loss Trade-Off in Federated Learning: A Distributed Client Selection Algorithm
    Minoo Hosseinzadeh, Nathaniel Hudson, Sam Heshmati, and Hana Khamfroush
    In 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), May 2022

2021

  1. ICCCN
    QoS-Aware Placement of Deep Learning Services on the Edge with Multiple Service Implementations
    Nathaniel Hudson, Hana Khamfroush, and Daniel E. Lucani
    In 2021 IEEE International Conference on Computer Communications and Networks (ICCCN) Big Data and Machine Learning for Networking (BDMLN) Workshop, May 2021
  2. ICCCN
    A Framework for Edge Intelligent Smart Distribution Grids via Federated Learning
    Nathaniel Hudson, Md Jakir Hossain, Minoo Hosseinzadeh, Hana Khamfroush, Mahshid Rahnamay-Naeini, and Nasir Ghani
    In 2021 IEEE International Conference on Computer Communications and Networks (ICCCN), May 2021
  3. DySPAN
    Joint Compression and Offloading Decisions for Deep Learning Services in 3-Tier Edge Systems
    Minoo Hosseinzadeh, Nathaniel Hudson, Xiaobo Zhao, Hana Khamfroush, and Daniel E. Lucani
    In 2021 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Jan 2021

2020

  1. TNSE
    Behavioral Information Diffusion for Opinion Maximization in Online Social Networks
    Nathaniel Hudson, and Hana Khamfroush
    IEEE Transactions on Network Science and Engineering (TNSE), Oct 2020
    Recipient of the 2021 Outstanding Student Paper award from the University of Kentucky Department of Computer Science.
  2. GC
    Improving the Accuracy-Latency Trade-off of Edge-Cloud Computation Offloading for Deep Learning Services
    Xiaobo Zhao, Minoo Hosseinzadeh, Nathaniel Hudson, Hana Khamfroush, and Daniel E. Lucani
    In 2020 IEEE Globecom Workshops, Dec 2020
  3. ICNC
    A Proximity-Based Generative Model for Online Social Network Topologies
    Emory Hufbauer, Nathaniel Hudson, and Hana Khamfroush
    In 2020 International Conference on Computing, Networking and Communications (ICNC), Feb 2020
  4. SMARTCOMP
    Smart Advertisement for Maximal Clicks in Online Social Networks Without User Data
    Nathaniel Hudson, Hana Khamfroush, Brent Harrison, and Adam Craig
    In 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Sep 2020

2019

  1. ASN
    Influence spread in two-layer interdependent networks: designed single-layer or random two-layer initial spreaders?
    Hana Khamfroush, Nathaniel Hudson, Samuel Iloo, and Mahshid Rahnamay-Naeini
    Springer Applied Network Science, Dec 2019
  2. ICNC
    On the Effectiveness of Standard Centrality Metrics for Interdependent Networks
    Nathaniel Hudson, Matthew Turner, Asare Nkansah, and Hana Khamfroush
    In 2020 IEEE International Conference on Computing, Networking, and Communications (ICNC), Feb 2019